Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
2 |
|
eleq1 |
|- ( n = M -> ( n e. Prime <-> M e. Prime ) ) |
3 |
|
eqeq1 |
|- ( n = M -> ( n = 2 <-> M = 2 ) ) |
4 |
|
oveq1 |
|- ( n = M -> ( n - 1 ) = ( M - 1 ) ) |
5 |
4
|
oveq1d |
|- ( n = M -> ( ( n - 1 ) / 2 ) = ( ( M - 1 ) / 2 ) ) |
6 |
5
|
oveq2d |
|- ( n = M -> ( A ^ ( ( n - 1 ) / 2 ) ) = ( A ^ ( ( M - 1 ) / 2 ) ) ) |
7 |
6
|
oveq1d |
|- ( n = M -> ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) = ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) ) |
8 |
|
id |
|- ( n = M -> n = M ) |
9 |
7 8
|
oveq12d |
|- ( n = M -> ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) = ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) ) |
10 |
9
|
oveq1d |
|- ( n = M -> ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) = ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) |
11 |
3 10
|
ifbieq2d |
|- ( n = M -> if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) = if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ) |
12 |
|
oveq1 |
|- ( n = M -> ( n pCnt N ) = ( M pCnt N ) ) |
13 |
11 12
|
oveq12d |
|- ( n = M -> ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) = ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) ) |
14 |
2 13
|
ifbieq1d |
|- ( n = M -> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) = if ( M e. Prime , ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) , 1 ) ) |
15 |
|
ovex |
|- ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) e. _V |
16 |
|
1ex |
|- 1 e. _V |
17 |
15 16
|
ifex |
|- if ( M e. Prime , ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) , 1 ) e. _V |
18 |
14 1 17
|
fvmpt |
|- ( M e. NN -> ( F ` M ) = if ( M e. Prime , ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) , 1 ) ) |