Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
2 |
1
|
3ad2ant2 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P e. Prime ) |
3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P e. NN ) |
5 |
|
simp1 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> A e. ZZ ) |
6 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
7 |
2 6
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P e. ZZ ) |
8 |
5 7
|
gcdcomd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A gcd P ) = ( P gcd A ) ) |
9 |
|
simp3 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> -. P || A ) |
10 |
|
coprm |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
11 |
2 5 10
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
12 |
9 11
|
mpbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P gcd A ) = 1 ) |
13 |
8 12
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A gcd P ) = 1 ) |
14 |
|
eulerth |
|- ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
15 |
4 5 13 14
|
syl3anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) |
16 |
|
phiprm |
|- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |
17 |
2 16
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( phi ` P ) = ( P - 1 ) ) |
18 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
19 |
4 18
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P - 1 ) e. NN0 ) |
20 |
17 19
|
eqeltrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( phi ` P ) e. NN0 ) |
21 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( phi ` P ) e. NN0 ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
22 |
5 20 21
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A ^ ( phi ` P ) ) e. ZZ ) |
23 |
|
1zzd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 1 e. ZZ ) |
24 |
|
moddvds |
|- ( ( P e. NN /\ ( A ^ ( phi ` P ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) |
25 |
4 22 23 24
|
syl3anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) ) |
26 |
15 25
|
mpbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P || ( ( A ^ ( phi ` P ) ) - 1 ) ) |
27 |
19
|
nn0cnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P - 1 ) e. CC ) |
28 |
|
2cnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 2 e. CC ) |
29 |
|
2ne0 |
|- 2 =/= 0 |
30 |
29
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 2 =/= 0 ) |
31 |
27 28 30
|
divcan1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( P - 1 ) / 2 ) x. 2 ) = ( P - 1 ) ) |
32 |
17 31
|
eqtr4d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( phi ` P ) = ( ( ( P - 1 ) / 2 ) x. 2 ) ) |
33 |
32
|
oveq2d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( A ^ ( ( ( P - 1 ) / 2 ) x. 2 ) ) ) |
34 |
5
|
zcnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> A e. CC ) |
35 |
|
2nn0 |
|- 2 e. NN0 |
36 |
35
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 2 e. NN0 ) |
37 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
38 |
37
|
3ad2ant2 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( P - 1 ) / 2 ) e. NN ) |
39 |
38
|
nnnn0d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
40 |
34 36 39
|
expmuld |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A ^ ( ( ( P - 1 ) / 2 ) x. 2 ) ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) ) |
41 |
33 40
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A ^ ( phi ` P ) ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) ) |
42 |
41
|
oveq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) - 1 ) ) |
43 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
44 |
43
|
oveq2i |
|- ( ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) - 1 ) |
45 |
42 44
|
eqtr4di |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) - ( 1 ^ 2 ) ) ) |
46 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
47 |
5 39 46
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
48 |
47
|
zcnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. CC ) |
49 |
|
ax-1cn |
|- 1 e. CC |
50 |
|
subsq |
|- ( ( ( A ^ ( ( P - 1 ) / 2 ) ) e. CC /\ 1 e. CC ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) x. ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
51 |
48 49 50
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) x. ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
52 |
45 51
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) - 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) x. ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
53 |
26 52
|
breqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P || ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) x. ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
54 |
47
|
peano2zd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ ) |
55 |
|
peano2zm |
|- ( ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ -> ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) e. ZZ ) |
56 |
47 55
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) e. ZZ ) |
57 |
|
euclemma |
|- ( ( P e. Prime /\ ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ /\ ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) e. ZZ ) -> ( P || ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) x. ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) <-> ( P || ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) \/ P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) ) |
58 |
2 54 56 57
|
syl3anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P || ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) x. ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) <-> ( P || ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) \/ P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) ) |
59 |
53 58
|
mpbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P || ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) \/ P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
60 |
|
dvdsval3 |
|- ( ( P e. NN /\ ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ ) -> ( P || ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) <-> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 ) ) |
61 |
4 54 60
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P || ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) <-> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 ) ) |
62 |
|
2z |
|- 2 e. ZZ |
63 |
62
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 2 e. ZZ ) |
64 |
|
moddvds |
|- ( ( P e. NN /\ ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. ZZ /\ 2 e. ZZ ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = ( 2 mod P ) <-> P || ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 2 ) ) ) |
65 |
4 54 63 64
|
syl3anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = ( 2 mod P ) <-> P || ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 2 ) ) ) |
66 |
|
2re |
|- 2 e. RR |
67 |
66
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 2 e. RR ) |
68 |
4
|
nnrpd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P e. RR+ ) |
69 |
|
0le2 |
|- 0 <_ 2 |
70 |
69
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 0 <_ 2 ) |
71 |
4
|
nnred |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P e. RR ) |
72 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
73 |
2 72
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P e. ( ZZ>= ` 2 ) ) |
74 |
|
eluzle |
|- ( P e. ( ZZ>= ` 2 ) -> 2 <_ P ) |
75 |
73 74
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 2 <_ P ) |
76 |
|
eldifsni |
|- ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) |
77 |
76
|
3ad2ant2 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> P =/= 2 ) |
78 |
67 71 75 77
|
leneltd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 2 < P ) |
79 |
|
modid |
|- ( ( ( 2 e. RR /\ P e. RR+ ) /\ ( 0 <_ 2 /\ 2 < P ) ) -> ( 2 mod P ) = 2 ) |
80 |
67 68 70 78 79
|
syl22anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( 2 mod P ) = 2 ) |
81 |
80
|
eqeq2d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = ( 2 mod P ) <-> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) ) |
82 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
83 |
82
|
oveq2i |
|- ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 2 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - ( 1 + 1 ) ) |
84 |
49
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> 1 e. CC ) |
85 |
48 84 84
|
pnpcan2d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - ( 1 + 1 ) ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) |
86 |
83 85
|
eqtrid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 2 ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) |
87 |
86
|
breq2d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P || ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 2 ) <-> P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
88 |
65 81 87
|
3bitr3rd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) <-> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) ) |
89 |
61 88
|
orbi12d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( P || ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) \/ P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) <-> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 \/ ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) ) ) |
90 |
59 89
|
mpbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 \/ ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) ) |
91 |
|
ovex |
|- ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. _V |
92 |
91
|
elpr |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. { 0 , 2 } <-> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 \/ ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) ) |
93 |
90 92
|
sylibr |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. { 0 , 2 } ) |