Metamath Proof Explorer


Theorem lgslem2

Description: The set Z of all integers with absolute value at most 1 contains { -u 1 , 0 , 1 } . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgslem2.z
|- Z = { x e. ZZ | ( abs ` x ) <_ 1 }
Assertion lgslem2
|- ( -u 1 e. Z /\ 0 e. Z /\ 1 e. Z )

Proof

Step Hyp Ref Expression
1 lgslem2.z
 |-  Z = { x e. ZZ | ( abs ` x ) <_ 1 }
2 neg1z
 |-  -u 1 e. ZZ
3 1le1
 |-  1 <_ 1
4 fveq2
 |-  ( x = -u 1 -> ( abs ` x ) = ( abs ` -u 1 ) )
5 ax-1cn
 |-  1 e. CC
6 5 absnegi
 |-  ( abs ` -u 1 ) = ( abs ` 1 )
7 abs1
 |-  ( abs ` 1 ) = 1
8 6 7 eqtri
 |-  ( abs ` -u 1 ) = 1
9 4 8 eqtrdi
 |-  ( x = -u 1 -> ( abs ` x ) = 1 )
10 9 breq1d
 |-  ( x = -u 1 -> ( ( abs ` x ) <_ 1 <-> 1 <_ 1 ) )
11 10 1 elrab2
 |-  ( -u 1 e. Z <-> ( -u 1 e. ZZ /\ 1 <_ 1 ) )
12 2 3 11 mpbir2an
 |-  -u 1 e. Z
13 0z
 |-  0 e. ZZ
14 0le1
 |-  0 <_ 1
15 fveq2
 |-  ( x = 0 -> ( abs ` x ) = ( abs ` 0 ) )
16 abs0
 |-  ( abs ` 0 ) = 0
17 15 16 eqtrdi
 |-  ( x = 0 -> ( abs ` x ) = 0 )
18 17 breq1d
 |-  ( x = 0 -> ( ( abs ` x ) <_ 1 <-> 0 <_ 1 ) )
19 18 1 elrab2
 |-  ( 0 e. Z <-> ( 0 e. ZZ /\ 0 <_ 1 ) )
20 13 14 19 mpbir2an
 |-  0 e. Z
21 1z
 |-  1 e. ZZ
22 fveq2
 |-  ( x = 1 -> ( abs ` x ) = ( abs ` 1 ) )
23 22 7 eqtrdi
 |-  ( x = 1 -> ( abs ` x ) = 1 )
24 23 breq1d
 |-  ( x = 1 -> ( ( abs ` x ) <_ 1 <-> 1 <_ 1 ) )
25 24 1 elrab2
 |-  ( 1 e. Z <-> ( 1 e. ZZ /\ 1 <_ 1 ) )
26 21 3 25 mpbir2an
 |-  1 e. Z
27 12 20 26 3pm3.2i
 |-  ( -u 1 e. Z /\ 0 e. Z /\ 1 e. Z )