Step |
Hyp |
Ref |
Expression |
1 |
|
lgslem2.z |
|- Z = { x e. ZZ | ( abs ` x ) <_ 1 } |
2 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
3 |
2
|
adantl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. Prime ) |
4 |
|
simpl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> A e. ZZ ) |
5 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
6 |
5
|
adantl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) / 2 ) e. NN ) |
7 |
|
prmdvdsexp |
|- ( ( P e. Prime /\ A e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN ) -> ( P || ( A ^ ( ( P - 1 ) / 2 ) ) <-> P || A ) ) |
8 |
3 4 6 7
|
syl3anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( A ^ ( ( P - 1 ) / 2 ) ) <-> P || A ) ) |
9 |
8
|
biimpar |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> P || ( A ^ ( ( P - 1 ) / 2 ) ) ) |
10 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
11 |
2 10
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> 1 < P ) |
12 |
11
|
ad2antlr |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> 1 < P ) |
13 |
|
p1modz1 |
|- ( ( P || ( A ^ ( ( P - 1 ) / 2 ) ) /\ 1 < P ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 1 ) |
14 |
9 12 13
|
syl2anc |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 1 ) |
15 |
14
|
oveq1d |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( 1 - 1 ) ) |
16 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
17 |
1
|
lgslem2 |
|- ( -u 1 e. Z /\ 0 e. Z /\ 1 e. Z ) |
18 |
17
|
simp2i |
|- 0 e. Z |
19 |
16 18
|
eqeltri |
|- ( 1 - 1 ) e. Z |
20 |
15 19
|
eqeltrdi |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |
21 |
|
lgslem1 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. { 0 , 2 } ) |
22 |
|
elpri |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. { 0 , 2 } -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 \/ ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) ) |
23 |
|
oveq1 |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( 0 - 1 ) ) |
24 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
25 |
17
|
simp1i |
|- -u 1 e. Z |
26 |
24 25
|
eqeltrri |
|- ( 0 - 1 ) e. Z |
27 |
23 26
|
eqeltrdi |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |
28 |
|
oveq1 |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( 2 - 1 ) ) |
29 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
30 |
17
|
simp3i |
|- 1 e. Z |
31 |
29 30
|
eqeltri |
|- ( 2 - 1 ) e. Z |
32 |
28 31
|
eqeltrdi |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |
33 |
27 32
|
jaoi |
|- ( ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 \/ ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |
34 |
21 22 33
|
3syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |
35 |
34
|
3expa |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |
36 |
20 35
|
pm2.61dan |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |