| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgslem2.z |  |-  Z = { x e. ZZ | ( abs ` x ) <_ 1 } | 
						
							| 2 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. Prime ) | 
						
							| 4 |  | simpl |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> A e. ZZ ) | 
						
							| 5 |  | oddprm |  |-  ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) / 2 ) e. NN ) | 
						
							| 7 |  | prmdvdsexp |  |-  ( ( P e. Prime /\ A e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN ) -> ( P || ( A ^ ( ( P - 1 ) / 2 ) ) <-> P || A ) ) | 
						
							| 8 | 3 4 6 7 | syl3anc |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( P || ( A ^ ( ( P - 1 ) / 2 ) ) <-> P || A ) ) | 
						
							| 9 | 8 | biimpar |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> P || ( A ^ ( ( P - 1 ) / 2 ) ) ) | 
						
							| 10 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 11 | 2 10 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> 1 < P ) | 
						
							| 12 | 11 | ad2antlr |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> 1 < P ) | 
						
							| 13 |  | p1modz1 |  |-  ( ( P || ( A ^ ( ( P - 1 ) / 2 ) ) /\ 1 < P ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 1 ) | 
						
							| 14 | 9 12 13 | syl2anc |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 1 ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 16 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 17 | 1 | lgslem2 |  |-  ( -u 1 e. Z /\ 0 e. Z /\ 1 e. Z ) | 
						
							| 18 | 17 | simp2i |  |-  0 e. Z | 
						
							| 19 | 16 18 | eqeltri |  |-  ( 1 - 1 ) e. Z | 
						
							| 20 | 15 19 | eqeltrdi |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) | 
						
							| 21 |  | lgslem1 |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. { 0 , 2 } ) | 
						
							| 22 |  | elpri |  |-  ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. { 0 , 2 } -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 \/ ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) ) | 
						
							| 23 |  | oveq1 |  |-  ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( 0 - 1 ) ) | 
						
							| 24 |  | df-neg |  |-  -u 1 = ( 0 - 1 ) | 
						
							| 25 | 17 | simp1i |  |-  -u 1 e. Z | 
						
							| 26 | 24 25 | eqeltrri |  |-  ( 0 - 1 ) e. Z | 
						
							| 27 | 23 26 | eqeltrdi |  |-  ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) | 
						
							| 28 |  | oveq1 |  |-  ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( 2 - 1 ) ) | 
						
							| 29 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 30 | 17 | simp3i |  |-  1 e. Z | 
						
							| 31 | 29 30 | eqeltri |  |-  ( 2 - 1 ) e. Z | 
						
							| 32 | 28 31 | eqeltrdi |  |-  ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) | 
						
							| 33 | 27 32 | jaoi |  |-  ( ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 0 \/ ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) = 2 ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) | 
						
							| 34 | 21 22 33 | 3syl |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ -. P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) | 
						
							| 35 | 34 | 3expa |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) | 
						
							| 36 | 20 35 | pm2.61dan |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) e. Z ) |