| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zmodcl |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A mod N ) e. NN0 ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( A mod N ) e. NN0 ) | 
						
							| 3 | 2 | nn0zd |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( A mod N ) e. ZZ ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( A mod N ) e. ZZ ) | 
						
							| 5 |  | simpr |  |-  ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) -> n e. Prime ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n e. Prime ) | 
						
							| 7 |  | simpl3 |  |-  ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) -> -. 2 || N ) | 
						
							| 8 |  | breq1 |  |-  ( n = 2 -> ( n || N <-> 2 || N ) ) | 
						
							| 9 | 8 | notbid |  |-  ( n = 2 -> ( -. n || N <-> -. 2 || N ) ) | 
						
							| 10 | 7 9 | syl5ibrcom |  |-  ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) -> ( n = 2 -> -. n || N ) ) | 
						
							| 11 | 10 | necon2ad |  |-  ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) -> ( n || N -> n =/= 2 ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n =/= 2 ) | 
						
							| 13 |  | eldifsn |  |-  ( n e. ( Prime \ { 2 } ) <-> ( n e. Prime /\ n =/= 2 ) ) | 
						
							| 14 | 6 12 13 | sylanbrc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n e. ( Prime \ { 2 } ) ) | 
						
							| 15 |  | oddprm |  |-  ( n e. ( Prime \ { 2 } ) -> ( ( n - 1 ) / 2 ) e. NN ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( n - 1 ) / 2 ) e. NN ) | 
						
							| 17 | 16 | nnnn0d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( n - 1 ) / 2 ) e. NN0 ) | 
						
							| 18 |  | zexpcl |  |-  ( ( ( A mod N ) e. ZZ /\ ( ( n - 1 ) / 2 ) e. NN0 ) -> ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 19 | 4 17 18 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 20 | 19 | zred |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) e. RR ) | 
						
							| 21 |  | simpll1 |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> A e. ZZ ) | 
						
							| 22 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( ( n - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( n - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 23 | 21 17 22 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( A ^ ( ( n - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 24 | 23 | zred |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( A ^ ( ( n - 1 ) / 2 ) ) e. RR ) | 
						
							| 25 |  | 1red |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> 1 e. RR ) | 
						
							| 26 |  | prmnn |  |-  ( n e. Prime -> n e. NN ) | 
						
							| 27 | 26 | ad2antlr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n e. NN ) | 
						
							| 28 | 27 | nnrpd |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n e. RR+ ) | 
						
							| 29 |  | prmz |  |-  ( n e. Prime -> n e. ZZ ) | 
						
							| 30 | 29 | ad2antlr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n e. ZZ ) | 
						
							| 31 |  | simp2 |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> N e. NN ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> N e. NN ) | 
						
							| 33 | 32 | nnzd |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> N e. ZZ ) | 
						
							| 34 | 4 21 | zsubcld |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( A mod N ) - A ) e. ZZ ) | 
						
							| 35 |  | simpr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n || N ) | 
						
							| 36 | 21 | zred |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> A e. RR ) | 
						
							| 37 | 32 | nnrpd |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> N e. RR+ ) | 
						
							| 38 |  | modabs2 |  |-  ( ( A e. RR /\ N e. RR+ ) -> ( ( A mod N ) mod N ) = ( A mod N ) ) | 
						
							| 39 | 36 37 38 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( A mod N ) mod N ) = ( A mod N ) ) | 
						
							| 40 |  | moddvds |  |-  ( ( N e. NN /\ ( A mod N ) e. ZZ /\ A e. ZZ ) -> ( ( ( A mod N ) mod N ) = ( A mod N ) <-> N || ( ( A mod N ) - A ) ) ) | 
						
							| 41 | 32 4 21 40 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( ( A mod N ) mod N ) = ( A mod N ) <-> N || ( ( A mod N ) - A ) ) ) | 
						
							| 42 | 39 41 | mpbid |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> N || ( ( A mod N ) - A ) ) | 
						
							| 43 | 30 33 34 35 42 | dvdstrd |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> n || ( ( A mod N ) - A ) ) | 
						
							| 44 |  | moddvds |  |-  ( ( n e. NN /\ ( A mod N ) e. ZZ /\ A e. ZZ ) -> ( ( ( A mod N ) mod n ) = ( A mod n ) <-> n || ( ( A mod N ) - A ) ) ) | 
						
							| 45 | 27 4 21 44 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( ( A mod N ) mod n ) = ( A mod n ) <-> n || ( ( A mod N ) - A ) ) ) | 
						
							| 46 | 43 45 | mpbird |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( A mod N ) mod n ) = ( A mod n ) ) | 
						
							| 47 |  | modexp |  |-  ( ( ( ( A mod N ) e. ZZ /\ A e. ZZ ) /\ ( ( ( n - 1 ) / 2 ) e. NN0 /\ n e. RR+ ) /\ ( ( A mod N ) mod n ) = ( A mod n ) ) -> ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) mod n ) = ( ( A ^ ( ( n - 1 ) / 2 ) ) mod n ) ) | 
						
							| 48 | 4 21 17 28 46 47 | syl221anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) mod n ) = ( ( A ^ ( ( n - 1 ) / 2 ) ) mod n ) ) | 
						
							| 49 |  | modadd1 |  |-  ( ( ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) e. RR /\ ( A ^ ( ( n - 1 ) / 2 ) ) e. RR ) /\ ( 1 e. RR /\ n e. RR+ ) /\ ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) mod n ) = ( ( A ^ ( ( n - 1 ) / 2 ) ) mod n ) ) -> ( ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) = ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) ) | 
						
							| 50 | 20 24 25 28 48 49 | syl221anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) = ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) = ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) | 
						
							| 52 |  | lgsval3 |  |-  ( ( ( A mod N ) e. ZZ /\ n e. ( Prime \ { 2 } ) ) -> ( ( A mod N ) /L n ) = ( ( ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) | 
						
							| 53 | 4 14 52 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( A mod N ) /L n ) = ( ( ( ( ( A mod N ) ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) | 
						
							| 54 |  | lgsval3 |  |-  ( ( A e. ZZ /\ n e. ( Prime \ { 2 } ) ) -> ( A /L n ) = ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) | 
						
							| 55 | 21 14 54 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( A /L n ) = ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) | 
						
							| 56 | 51 53 55 | 3eqtr4d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( A mod N ) /L n ) = ( A /L n ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ n || N ) -> ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) = ( ( A /L n ) ^ ( n pCnt N ) ) ) | 
						
							| 58 | 3 | ad2antrr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( A mod N ) e. ZZ ) | 
						
							| 59 | 29 | ad2antlr |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> n e. ZZ ) | 
						
							| 60 |  | lgscl |  |-  ( ( ( A mod N ) e. ZZ /\ n e. ZZ ) -> ( ( A mod N ) /L n ) e. ZZ ) | 
						
							| 61 | 58 59 60 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( A mod N ) /L n ) e. ZZ ) | 
						
							| 62 | 61 | zcnd |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( A mod N ) /L n ) e. CC ) | 
						
							| 63 | 62 | exp0d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( ( A mod N ) /L n ) ^ 0 ) = 1 ) | 
						
							| 64 |  | simpll1 |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> A e. ZZ ) | 
						
							| 65 |  | lgscl |  |-  ( ( A e. ZZ /\ n e. ZZ ) -> ( A /L n ) e. ZZ ) | 
						
							| 66 | 64 59 65 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( A /L n ) e. ZZ ) | 
						
							| 67 | 66 | zcnd |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( A /L n ) e. CC ) | 
						
							| 68 | 67 | exp0d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( A /L n ) ^ 0 ) = 1 ) | 
						
							| 69 | 63 68 | eqtr4d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( ( A mod N ) /L n ) ^ 0 ) = ( ( A /L n ) ^ 0 ) ) | 
						
							| 70 | 31 | adantr |  |-  ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) -> N e. NN ) | 
						
							| 71 |  | pceq0 |  |-  ( ( n e. Prime /\ N e. NN ) -> ( ( n pCnt N ) = 0 <-> -. n || N ) ) | 
						
							| 72 | 5 70 71 | syl2anc |  |-  ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) -> ( ( n pCnt N ) = 0 <-> -. n || N ) ) | 
						
							| 73 | 72 | biimpar |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( n pCnt N ) = 0 ) | 
						
							| 74 | 73 | oveq2d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) = ( ( ( A mod N ) /L n ) ^ 0 ) ) | 
						
							| 75 | 73 | oveq2d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( ( A /L n ) ^ 0 ) ) | 
						
							| 76 | 69 74 75 | 3eqtr4d |  |-  ( ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) /\ -. n || N ) -> ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) = ( ( A /L n ) ^ ( n pCnt N ) ) ) | 
						
							| 77 | 57 76 | pm2.61dan |  |-  ( ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) /\ n e. Prime ) -> ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) = ( ( A /L n ) ^ ( n pCnt N ) ) ) | 
						
							| 78 | 77 | ifeq1da |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 79 | 78 | mpteq2dv |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( n e. NN |-> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) | 
						
							| 80 | 79 | seqeq3d |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) = seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ) | 
						
							| 81 | 80 | fveq1d |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` N ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` N ) ) | 
						
							| 82 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 83 | 82 | lgsval4a |  |-  ( ( ( A mod N ) e. ZZ /\ N e. NN ) -> ( ( A mod N ) /L N ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` N ) ) | 
						
							| 84 | 3 31 83 | syl2anc |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( ( A mod N ) /L N ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A mod N ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` N ) ) | 
						
							| 85 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 86 | 85 | lgsval4a |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A /L N ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` N ) ) | 
						
							| 87 | 86 | 3adant3 |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( A /L N ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` N ) ) | 
						
							| 88 | 81 84 87 | 3eqtr4d |  |-  ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( ( A mod N ) /L N ) = ( A /L N ) ) |