| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zsqcl |
|- ( A e. ZZ -> ( A ^ 2 ) e. ZZ ) |
| 2 |
1
|
adantr |
|- ( ( A e. ZZ /\ A =/= 0 ) -> ( A ^ 2 ) e. ZZ ) |
| 3 |
|
simpl |
|- ( ( B e. ZZ /\ B =/= 0 ) -> B e. ZZ ) |
| 4 |
|
simpl |
|- ( ( N e. ZZ /\ ( A gcd N ) = 1 ) -> N e. ZZ ) |
| 5 |
2 3 4
|
3anim123i |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( A ^ 2 ) e. ZZ /\ B e. ZZ /\ N e. ZZ ) ) |
| 6 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 7 |
|
sqne0 |
|- ( A e. CC -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |
| 8 |
6 7
|
syl |
|- ( A e. ZZ -> ( ( A ^ 2 ) =/= 0 <-> A =/= 0 ) ) |
| 9 |
8
|
biimpar |
|- ( ( A e. ZZ /\ A =/= 0 ) -> ( A ^ 2 ) =/= 0 ) |
| 10 |
|
simpr |
|- ( ( B e. ZZ /\ B =/= 0 ) -> B =/= 0 ) |
| 11 |
9 10
|
anim12i |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( ( A ^ 2 ) =/= 0 /\ B =/= 0 ) ) |
| 12 |
11
|
3adant3 |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( A ^ 2 ) =/= 0 /\ B =/= 0 ) ) |
| 13 |
|
lgsdir |
|- ( ( ( ( A ^ 2 ) e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( ( A ^ 2 ) =/= 0 /\ B =/= 0 ) ) -> ( ( ( A ^ 2 ) x. B ) /L N ) = ( ( ( A ^ 2 ) /L N ) x. ( B /L N ) ) ) |
| 14 |
5 12 13
|
syl2anc |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( ( A ^ 2 ) x. B ) /L N ) = ( ( ( A ^ 2 ) /L N ) x. ( B /L N ) ) ) |
| 15 |
|
3anass |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) <-> ( ( A e. ZZ /\ A =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) ) |
| 16 |
15
|
biimpri |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) ) |
| 17 |
16
|
3adant2 |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) ) |
| 18 |
|
lgssq |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A ^ 2 ) /L N ) = 1 ) |
| 19 |
17 18
|
syl |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( A ^ 2 ) /L N ) = 1 ) |
| 20 |
19
|
oveq1d |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( ( A ^ 2 ) /L N ) x. ( B /L N ) ) = ( 1 x. ( B /L N ) ) ) |
| 21 |
3 4
|
anim12i |
|- ( ( ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( B e. ZZ /\ N e. ZZ ) ) |
| 22 |
21
|
3adant1 |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( B e. ZZ /\ N e. ZZ ) ) |
| 23 |
|
lgscl |
|- ( ( B e. ZZ /\ N e. ZZ ) -> ( B /L N ) e. ZZ ) |
| 24 |
22 23
|
syl |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( B /L N ) e. ZZ ) |
| 25 |
24
|
zcnd |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( B /L N ) e. CC ) |
| 26 |
25
|
mullidd |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( 1 x. ( B /L N ) ) = ( B /L N ) ) |
| 27 |
14 20 26
|
3eqtrd |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) /\ ( N e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( ( A ^ 2 ) x. B ) /L N ) = ( B /L N ) ) |