Step |
Hyp |
Ref |
Expression |
1 |
|
iffalse |
|- ( -. ( A ^ 2 ) = 1 -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 0 ) |
2 |
1
|
necon1ai |
|- ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) =/= 0 -> ( A ^ 2 ) = 1 ) |
3 |
|
iftrue |
|- ( ( A ^ 2 ) = 1 -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 1 ) |
4 |
|
ax-1ne0 |
|- 1 =/= 0 |
5 |
4
|
a1i |
|- ( ( A ^ 2 ) = 1 -> 1 =/= 0 ) |
6 |
3 5
|
eqnetrd |
|- ( ( A ^ 2 ) = 1 -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) =/= 0 ) |
7 |
2 6
|
impbii |
|- ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) =/= 0 <-> ( A ^ 2 ) = 1 ) |
8 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
9 |
8
|
ad2antrr |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> A e. RR ) |
10 |
|
absresq |
|- ( A e. RR -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
11 |
9 10
|
syl |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( abs ` A ) ^ 2 ) = ( A ^ 2 ) ) |
12 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
13 |
12
|
a1i |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( 1 ^ 2 ) = 1 ) |
14 |
11 13
|
eqeq12d |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) <-> ( A ^ 2 ) = 1 ) ) |
15 |
9
|
recnd |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> A e. CC ) |
16 |
15
|
abscld |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( abs ` A ) e. RR ) |
17 |
15
|
absge0d |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> 0 <_ ( abs ` A ) ) |
18 |
|
1re |
|- 1 e. RR |
19 |
|
0le1 |
|- 0 <_ 1 |
20 |
|
sq11 |
|- ( ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) /\ ( 1 e. RR /\ 0 <_ 1 ) ) -> ( ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) <-> ( abs ` A ) = 1 ) ) |
21 |
18 19 20
|
mpanr12 |
|- ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) -> ( ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) <-> ( abs ` A ) = 1 ) ) |
22 |
16 17 21
|
syl2anc |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) <-> ( abs ` A ) = 1 ) ) |
23 |
14 22
|
bitr3d |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( A ^ 2 ) = 1 <-> ( abs ` A ) = 1 ) ) |
24 |
7 23
|
syl5bb |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) =/= 0 <-> ( abs ` A ) = 1 ) ) |
25 |
|
oveq2 |
|- ( N = 0 -> ( A /L N ) = ( A /L 0 ) ) |
26 |
|
lgs0 |
|- ( A e. ZZ -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |
27 |
26
|
adantr |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |
28 |
25 27
|
sylan9eqr |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( A /L N ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |
29 |
28
|
neeq1d |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( A /L N ) =/= 0 <-> if ( ( A ^ 2 ) = 1 , 1 , 0 ) =/= 0 ) ) |
30 |
|
oveq2 |
|- ( N = 0 -> ( A gcd N ) = ( A gcd 0 ) ) |
31 |
|
gcdid0 |
|- ( A e. ZZ -> ( A gcd 0 ) = ( abs ` A ) ) |
32 |
31
|
adantr |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A gcd 0 ) = ( abs ` A ) ) |
33 |
30 32
|
sylan9eqr |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( A gcd N ) = ( abs ` A ) ) |
34 |
33
|
eqeq1d |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( A gcd N ) = 1 <-> ( abs ` A ) = 1 ) ) |
35 |
24 29 34
|
3bitr4d |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( A /L N ) =/= 0 <-> ( A gcd N ) = 1 ) ) |
36 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) |
37 |
36
|
lgsval4 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
38 |
37
|
neeq1d |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( A /L N ) =/= 0 <-> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) =/= 0 ) ) |
39 |
|
neeq1 |
|- ( -u 1 = if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) -> ( -u 1 =/= 0 <-> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) =/= 0 ) ) |
40 |
|
neeq1 |
|- ( 1 = if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) -> ( 1 =/= 0 <-> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) =/= 0 ) ) |
41 |
|
neg1ne0 |
|- -u 1 =/= 0 |
42 |
39 40 41 4
|
keephyp |
|- if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) =/= 0 |
43 |
42
|
biantrur |
|- ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 <-> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) =/= 0 /\ ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) ) |
44 |
|
neg1cn |
|- -u 1 e. CC |
45 |
|
ax-1cn |
|- 1 e. CC |
46 |
44 45
|
ifcli |
|- if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC |
47 |
46
|
a1i |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) |
48 |
|
nnabscl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
49 |
48
|
3adant1 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
50 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
51 |
49 50
|
eleqtrdi |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) |
52 |
36
|
lgsfcl3 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) |
53 |
|
elfznn |
|- ( k e. ( 1 ... ( abs ` N ) ) -> k e. NN ) |
54 |
|
ffvelrn |
|- ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
55 |
52 53 54
|
syl2an |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
56 |
55
|
zcnd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) |
57 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
58 |
57
|
adantl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
59 |
51 56 58
|
seqcl |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) |
60 |
47 59
|
mulne0bd |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) =/= 0 /\ ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) <-> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) =/= 0 ) ) |
61 |
43 60
|
bitr2id |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) =/= 0 <-> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) ) |
62 |
|
gcd2n0cl |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A gcd N ) e. NN ) |
63 |
|
eluz2b3 |
|- ( ( A gcd N ) e. ( ZZ>= ` 2 ) <-> ( ( A gcd N ) e. NN /\ ( A gcd N ) =/= 1 ) ) |
64 |
|
exprmfct |
|- ( ( A gcd N ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( A gcd N ) ) |
65 |
63 64
|
sylbir |
|- ( ( ( A gcd N ) e. NN /\ ( A gcd N ) =/= 1 ) -> E. p e. Prime p || ( A gcd N ) ) |
66 |
57
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
67 |
56
|
adantlr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) |
68 |
|
mul02 |
|- ( k e. CC -> ( 0 x. k ) = 0 ) |
69 |
68
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ k e. CC ) -> ( 0 x. k ) = 0 ) |
70 |
|
mul01 |
|- ( k e. CC -> ( k x. 0 ) = 0 ) |
71 |
70
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ k e. CC ) -> ( k x. 0 ) = 0 ) |
72 |
|
simprr |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p || ( A gcd N ) ) |
73 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
74 |
73
|
ad2antrl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p e. ZZ ) |
75 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> A e. ZZ ) |
76 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> N e. ZZ ) |
77 |
|
dvdsgcdb |
|- ( ( p e. ZZ /\ A e. ZZ /\ N e. ZZ ) -> ( ( p || A /\ p || N ) <-> p || ( A gcd N ) ) ) |
78 |
74 75 76 77
|
syl3anc |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( ( p || A /\ p || N ) <-> p || ( A gcd N ) ) ) |
79 |
72 78
|
mpbird |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( p || A /\ p || N ) ) |
80 |
79
|
simprd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p || N ) |
81 |
|
dvdsabsb |
|- ( ( p e. ZZ /\ N e. ZZ ) -> ( p || N <-> p || ( abs ` N ) ) ) |
82 |
74 76 81
|
syl2anc |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( p || N <-> p || ( abs ` N ) ) ) |
83 |
80 82
|
mpbid |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p || ( abs ` N ) ) |
84 |
49
|
adantr |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( abs ` N ) e. NN ) |
85 |
|
dvdsle |
|- ( ( p e. ZZ /\ ( abs ` N ) e. NN ) -> ( p || ( abs ` N ) -> p <_ ( abs ` N ) ) ) |
86 |
74 84 85
|
syl2anc |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( p || ( abs ` N ) -> p <_ ( abs ` N ) ) ) |
87 |
83 86
|
mpd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p <_ ( abs ` N ) ) |
88 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
89 |
88
|
ad2antrl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p e. NN ) |
90 |
89 50
|
eleqtrdi |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p e. ( ZZ>= ` 1 ) ) |
91 |
84
|
nnzd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( abs ` N ) e. ZZ ) |
92 |
|
elfz5 |
|- ( ( p e. ( ZZ>= ` 1 ) /\ ( abs ` N ) e. ZZ ) -> ( p e. ( 1 ... ( abs ` N ) ) <-> p <_ ( abs ` N ) ) ) |
93 |
90 91 92
|
syl2anc |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( p e. ( 1 ... ( abs ` N ) ) <-> p <_ ( abs ` N ) ) ) |
94 |
87 93
|
mpbird |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p e. ( 1 ... ( abs ` N ) ) ) |
95 |
|
eleq1w |
|- ( n = p -> ( n e. Prime <-> p e. Prime ) ) |
96 |
|
oveq2 |
|- ( n = p -> ( A /L n ) = ( A /L p ) ) |
97 |
|
oveq1 |
|- ( n = p -> ( n pCnt N ) = ( p pCnt N ) ) |
98 |
96 97
|
oveq12d |
|- ( n = p -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( ( A /L p ) ^ ( p pCnt N ) ) ) |
99 |
95 98
|
ifbieq1d |
|- ( n = p -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( p e. Prime , ( ( A /L p ) ^ ( p pCnt N ) ) , 1 ) ) |
100 |
|
ovex |
|- ( ( A /L p ) ^ ( p pCnt N ) ) e. _V |
101 |
|
1ex |
|- 1 e. _V |
102 |
100 101
|
ifex |
|- if ( p e. Prime , ( ( A /L p ) ^ ( p pCnt N ) ) , 1 ) e. _V |
103 |
99 36 102
|
fvmpt |
|- ( p e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` p ) = if ( p e. Prime , ( ( A /L p ) ^ ( p pCnt N ) ) , 1 ) ) |
104 |
89 103
|
syl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` p ) = if ( p e. Prime , ( ( A /L p ) ^ ( p pCnt N ) ) , 1 ) ) |
105 |
|
iftrue |
|- ( p e. Prime -> if ( p e. Prime , ( ( A /L p ) ^ ( p pCnt N ) ) , 1 ) = ( ( A /L p ) ^ ( p pCnt N ) ) ) |
106 |
105
|
ad2antrl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> if ( p e. Prime , ( ( A /L p ) ^ ( p pCnt N ) ) , 1 ) = ( ( A /L p ) ^ ( p pCnt N ) ) ) |
107 |
|
oveq2 |
|- ( p = 2 -> ( A /L p ) = ( A /L 2 ) ) |
108 |
|
lgs2 |
|- ( A e. ZZ -> ( A /L 2 ) = if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) ) |
109 |
75 108
|
syl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( A /L 2 ) = if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) ) |
110 |
107 109
|
sylan9eqr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p = 2 ) -> ( A /L p ) = if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) ) |
111 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p = 2 ) -> p = 2 ) |
112 |
79
|
simpld |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p || A ) |
113 |
112
|
adantr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p = 2 ) -> p || A ) |
114 |
111 113
|
eqbrtrrd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p = 2 ) -> 2 || A ) |
115 |
114
|
iftrued |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p = 2 ) -> if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) = 0 ) |
116 |
110 115
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p = 2 ) -> ( A /L p ) = 0 ) |
117 |
|
simpll1 |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> A e. ZZ ) |
118 |
|
simprl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> p e. Prime ) |
119 |
118
|
adantr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p e. Prime ) |
120 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p =/= 2 ) |
121 |
|
eldifsn |
|- ( p e. ( Prime \ { 2 } ) <-> ( p e. Prime /\ p =/= 2 ) ) |
122 |
119 120 121
|
sylanbrc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p e. ( Prime \ { 2 } ) ) |
123 |
|
lgsval3 |
|- ( ( A e. ZZ /\ p e. ( Prime \ { 2 } ) ) -> ( A /L p ) = ( ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) - 1 ) ) |
124 |
117 122 123
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( A /L p ) = ( ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) - 1 ) ) |
125 |
|
oddprm |
|- ( p e. ( Prime \ { 2 } ) -> ( ( p - 1 ) / 2 ) e. NN ) |
126 |
122 125
|
syl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( p - 1 ) / 2 ) e. NN ) |
127 |
126
|
nnnn0d |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( p - 1 ) / 2 ) e. NN0 ) |
128 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( p - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( p - 1 ) / 2 ) ) e. ZZ ) |
129 |
117 127 128
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( A ^ ( ( p - 1 ) / 2 ) ) e. ZZ ) |
130 |
129
|
zred |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( A ^ ( ( p - 1 ) / 2 ) ) e. RR ) |
131 |
|
0red |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> 0 e. RR ) |
132 |
18
|
a1i |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> 1 e. RR ) |
133 |
119 88
|
syl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p e. NN ) |
134 |
133
|
nnrpd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p e. RR+ ) |
135 |
|
0zd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> 0 e. ZZ ) |
136 |
112
|
adantr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p || A ) |
137 |
|
dvdsval3 |
|- ( ( p e. NN /\ A e. ZZ ) -> ( p || A <-> ( A mod p ) = 0 ) ) |
138 |
133 117 137
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( p || A <-> ( A mod p ) = 0 ) ) |
139 |
136 138
|
mpbid |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( A mod p ) = 0 ) |
140 |
|
0mod |
|- ( p e. RR+ -> ( 0 mod p ) = 0 ) |
141 |
134 140
|
syl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( 0 mod p ) = 0 ) |
142 |
139 141
|
eqtr4d |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( A mod p ) = ( 0 mod p ) ) |
143 |
|
modexp |
|- ( ( ( A e. ZZ /\ 0 e. ZZ ) /\ ( ( ( p - 1 ) / 2 ) e. NN0 /\ p e. RR+ ) /\ ( A mod p ) = ( 0 mod p ) ) -> ( ( A ^ ( ( p - 1 ) / 2 ) ) mod p ) = ( ( 0 ^ ( ( p - 1 ) / 2 ) ) mod p ) ) |
144 |
117 135 127 134 142 143
|
syl221anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( A ^ ( ( p - 1 ) / 2 ) ) mod p ) = ( ( 0 ^ ( ( p - 1 ) / 2 ) ) mod p ) ) |
145 |
126
|
0expd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( 0 ^ ( ( p - 1 ) / 2 ) ) = 0 ) |
146 |
145
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( 0 ^ ( ( p - 1 ) / 2 ) ) mod p ) = ( 0 mod p ) ) |
147 |
144 146
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( A ^ ( ( p - 1 ) / 2 ) ) mod p ) = ( 0 mod p ) ) |
148 |
|
modadd1 |
|- ( ( ( ( A ^ ( ( p - 1 ) / 2 ) ) e. RR /\ 0 e. RR ) /\ ( 1 e. RR /\ p e. RR+ ) /\ ( ( A ^ ( ( p - 1 ) / 2 ) ) mod p ) = ( 0 mod p ) ) -> ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) = ( ( 0 + 1 ) mod p ) ) |
149 |
130 131 132 134 147 148
|
syl221anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) = ( ( 0 + 1 ) mod p ) ) |
150 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
151 |
150
|
oveq1i |
|- ( ( 0 + 1 ) mod p ) = ( 1 mod p ) |
152 |
149 151
|
eqtrdi |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) = ( 1 mod p ) ) |
153 |
133
|
nnred |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p e. RR ) |
154 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
155 |
119 154
|
syl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> p e. ( ZZ>= ` 2 ) ) |
156 |
|
eluz2b2 |
|- ( p e. ( ZZ>= ` 2 ) <-> ( p e. NN /\ 1 < p ) ) |
157 |
155 156
|
sylib |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( p e. NN /\ 1 < p ) ) |
158 |
157
|
simprd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> 1 < p ) |
159 |
|
1mod |
|- ( ( p e. RR /\ 1 < p ) -> ( 1 mod p ) = 1 ) |
160 |
153 158 159
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( 1 mod p ) = 1 ) |
161 |
152 160
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) = 1 ) |
162 |
161
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) - 1 ) = ( 1 - 1 ) ) |
163 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
164 |
162 163
|
eqtrdi |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( ( ( ( A ^ ( ( p - 1 ) / 2 ) ) + 1 ) mod p ) - 1 ) = 0 ) |
165 |
124 164
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) /\ p =/= 2 ) -> ( A /L p ) = 0 ) |
166 |
116 165
|
pm2.61dane |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( A /L p ) = 0 ) |
167 |
166
|
oveq1d |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( ( A /L p ) ^ ( p pCnt N ) ) = ( 0 ^ ( p pCnt N ) ) ) |
168 |
|
zq |
|- ( N e. ZZ -> N e. QQ ) |
169 |
76 168
|
syl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> N e. QQ ) |
170 |
|
pcabs |
|- ( ( p e. Prime /\ N e. QQ ) -> ( p pCnt ( abs ` N ) ) = ( p pCnt N ) ) |
171 |
118 169 170
|
syl2anc |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( p pCnt ( abs ` N ) ) = ( p pCnt N ) ) |
172 |
|
pcelnn |
|- ( ( p e. Prime /\ ( abs ` N ) e. NN ) -> ( ( p pCnt ( abs ` N ) ) e. NN <-> p || ( abs ` N ) ) ) |
173 |
118 84 172
|
syl2anc |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( ( p pCnt ( abs ` N ) ) e. NN <-> p || ( abs ` N ) ) ) |
174 |
83 173
|
mpbird |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( p pCnt ( abs ` N ) ) e. NN ) |
175 |
171 174
|
eqeltrrd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( p pCnt N ) e. NN ) |
176 |
175
|
0expd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( 0 ^ ( p pCnt N ) ) = 0 ) |
177 |
167 176
|
eqtrd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( ( A /L p ) ^ ( p pCnt N ) ) = 0 ) |
178 |
104 106 177
|
3eqtrd |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` p ) = 0 ) |
179 |
66 67 69 71 94 84 178
|
seqz |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( p e. Prime /\ p || ( A gcd N ) ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = 0 ) |
180 |
179
|
rexlimdvaa |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( E. p e. Prime p || ( A gcd N ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = 0 ) ) |
181 |
65 180
|
syl5 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( ( A gcd N ) e. NN /\ ( A gcd N ) =/= 1 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = 0 ) ) |
182 |
62 181
|
mpand |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( A gcd N ) =/= 1 -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = 0 ) ) |
183 |
182
|
necon1d |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 -> ( A gcd N ) = 1 ) ) |
184 |
51
|
adantr |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) |
185 |
53
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> k e. NN ) |
186 |
|
eleq1w |
|- ( n = k -> ( n e. Prime <-> k e. Prime ) ) |
187 |
|
oveq2 |
|- ( n = k -> ( A /L n ) = ( A /L k ) ) |
188 |
|
oveq1 |
|- ( n = k -> ( n pCnt N ) = ( k pCnt N ) ) |
189 |
187 188
|
oveq12d |
|- ( n = k -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) |
190 |
186 189
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
191 |
|
ovex |
|- ( ( A /L k ) ^ ( k pCnt N ) ) e. _V |
192 |
191 101
|
ifex |
|- if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V |
193 |
190 36 192
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
194 |
185 193
|
syl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
195 |
|
simpll1 |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> A e. ZZ ) |
196 |
|
prmz |
|- ( k e. Prime -> k e. ZZ ) |
197 |
196
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> k e. ZZ ) |
198 |
|
lgscl |
|- ( ( A e. ZZ /\ k e. ZZ ) -> ( A /L k ) e. ZZ ) |
199 |
195 197 198
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( A /L k ) e. ZZ ) |
200 |
199
|
zcnd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( A /L k ) e. CC ) |
201 |
200
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> ( A /L k ) e. CC ) |
202 |
|
oveq2 |
|- ( k = 2 -> ( A /L k ) = ( A /L 2 ) ) |
203 |
195
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> A e. ZZ ) |
204 |
203 108
|
syl |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> ( A /L 2 ) = if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) ) |
205 |
202 204
|
sylan9eqr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k = 2 ) -> ( A /L k ) = if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) ) |
206 |
|
nprmdvds1 |
|- ( k e. Prime -> -. k || 1 ) |
207 |
206
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> -. k || 1 ) |
208 |
|
simpll2 |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> N e. ZZ ) |
209 |
|
dvdsgcdb |
|- ( ( k e. ZZ /\ A e. ZZ /\ N e. ZZ ) -> ( ( k || A /\ k || N ) <-> k || ( A gcd N ) ) ) |
210 |
197 195 208 209
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( ( k || A /\ k || N ) <-> k || ( A gcd N ) ) ) |
211 |
|
simplr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( A gcd N ) = 1 ) |
212 |
211
|
breq2d |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( k || ( A gcd N ) <-> k || 1 ) ) |
213 |
210 212
|
bitrd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( ( k || A /\ k || N ) <-> k || 1 ) ) |
214 |
207 213
|
mtbird |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> -. ( k || A /\ k || N ) ) |
215 |
|
imnan |
|- ( ( k || A -> -. k || N ) <-> -. ( k || A /\ k || N ) ) |
216 |
214 215
|
sylibr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( k || A -> -. k || N ) ) |
217 |
216
|
con2d |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( k || N -> -. k || A ) ) |
218 |
217
|
imp |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> -. k || A ) |
219 |
|
breq1 |
|- ( k = 2 -> ( k || A <-> 2 || A ) ) |
220 |
219
|
notbid |
|- ( k = 2 -> ( -. k || A <-> -. 2 || A ) ) |
221 |
218 220
|
syl5ibcom |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> ( k = 2 -> -. 2 || A ) ) |
222 |
221
|
imp |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k = 2 ) -> -. 2 || A ) |
223 |
222
|
iffalsed |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k = 2 ) -> if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) = if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) |
224 |
205 223
|
eqtrd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k = 2 ) -> ( A /L k ) = if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) |
225 |
|
neeq1 |
|- ( 1 = if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) -> ( 1 =/= 0 <-> if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) =/= 0 ) ) |
226 |
|
neeq1 |
|- ( -u 1 = if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) -> ( -u 1 =/= 0 <-> if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) =/= 0 ) ) |
227 |
225 226 4 41
|
keephyp |
|- if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) =/= 0 |
228 |
227
|
a1i |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k = 2 ) -> if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) =/= 0 ) |
229 |
224 228
|
eqnetrd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k = 2 ) -> ( A /L k ) =/= 0 ) |
230 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> k e. Prime ) |
231 |
230
|
ad2antrr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k e. Prime ) |
232 |
231 206
|
syl |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> -. k || 1 ) |
233 |
|
simplr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k || N ) |
234 |
231 196
|
syl |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k e. ZZ ) |
235 |
203
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> A e. ZZ ) |
236 |
|
simpr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k =/= 2 ) |
237 |
|
eldifsn |
|- ( k e. ( Prime \ { 2 } ) <-> ( k e. Prime /\ k =/= 2 ) ) |
238 |
231 236 237
|
sylanbrc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k e. ( Prime \ { 2 } ) ) |
239 |
|
oddprm |
|- ( k e. ( Prime \ { 2 } ) -> ( ( k - 1 ) / 2 ) e. NN ) |
240 |
238 239
|
syl |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( k - 1 ) / 2 ) e. NN ) |
241 |
240
|
nnnn0d |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( k - 1 ) / 2 ) e. NN0 ) |
242 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( k - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( k - 1 ) / 2 ) ) e. ZZ ) |
243 |
235 241 242
|
syl2anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( A ^ ( ( k - 1 ) / 2 ) ) e. ZZ ) |
244 |
208
|
ad2antrr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> N e. ZZ ) |
245 |
|
dvdsgcd |
|- ( ( k e. ZZ /\ ( A ^ ( ( k - 1 ) / 2 ) ) e. ZZ /\ N e. ZZ ) -> ( ( k || ( A ^ ( ( k - 1 ) / 2 ) ) /\ k || N ) -> k || ( ( A ^ ( ( k - 1 ) / 2 ) ) gcd N ) ) ) |
246 |
234 243 244 245
|
syl3anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( k || ( A ^ ( ( k - 1 ) / 2 ) ) /\ k || N ) -> k || ( ( A ^ ( ( k - 1 ) / 2 ) ) gcd N ) ) ) |
247 |
233 246
|
mpan2d |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( k || ( A ^ ( ( k - 1 ) / 2 ) ) -> k || ( ( A ^ ( ( k - 1 ) / 2 ) ) gcd N ) ) ) |
248 |
235
|
zcnd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> A e. CC ) |
249 |
248 241
|
absexpd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( abs ` ( A ^ ( ( k - 1 ) / 2 ) ) ) = ( ( abs ` A ) ^ ( ( k - 1 ) / 2 ) ) ) |
250 |
249
|
oveq1d |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( abs ` ( A ^ ( ( k - 1 ) / 2 ) ) ) gcd ( abs ` N ) ) = ( ( ( abs ` A ) ^ ( ( k - 1 ) / 2 ) ) gcd ( abs ` N ) ) ) |
251 |
|
gcdabs |
|- ( ( ( A ^ ( ( k - 1 ) / 2 ) ) e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A ^ ( ( k - 1 ) / 2 ) ) ) gcd ( abs ` N ) ) = ( ( A ^ ( ( k - 1 ) / 2 ) ) gcd N ) ) |
252 |
243 244 251
|
syl2anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( abs ` ( A ^ ( ( k - 1 ) / 2 ) ) ) gcd ( abs ` N ) ) = ( ( A ^ ( ( k - 1 ) / 2 ) ) gcd N ) ) |
253 |
|
gcdabs |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` A ) gcd ( abs ` N ) ) = ( A gcd N ) ) |
254 |
235 244 253
|
syl2anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( abs ` A ) gcd ( abs ` N ) ) = ( A gcd N ) ) |
255 |
211
|
ad2antrr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( A gcd N ) = 1 ) |
256 |
254 255
|
eqtrd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( abs ` A ) gcd ( abs ` N ) ) = 1 ) |
257 |
218
|
adantr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> -. k || A ) |
258 |
|
dvds0 |
|- ( k e. ZZ -> k || 0 ) |
259 |
234 258
|
syl |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k || 0 ) |
260 |
|
breq2 |
|- ( A = 0 -> ( k || A <-> k || 0 ) ) |
261 |
259 260
|
syl5ibrcom |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( A = 0 -> k || A ) ) |
262 |
261
|
necon3bd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( -. k || A -> A =/= 0 ) ) |
263 |
257 262
|
mpd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> A =/= 0 ) |
264 |
|
nnabscl |
|- ( ( A e. ZZ /\ A =/= 0 ) -> ( abs ` A ) e. NN ) |
265 |
235 263 264
|
syl2anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( abs ` A ) e. NN ) |
266 |
|
simpll3 |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> N =/= 0 ) |
267 |
208 266 48
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( abs ` N ) e. NN ) |
268 |
267
|
ad2antrr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( abs ` N ) e. NN ) |
269 |
|
rplpwr |
|- ( ( ( abs ` A ) e. NN /\ ( abs ` N ) e. NN /\ ( ( k - 1 ) / 2 ) e. NN ) -> ( ( ( abs ` A ) gcd ( abs ` N ) ) = 1 -> ( ( ( abs ` A ) ^ ( ( k - 1 ) / 2 ) ) gcd ( abs ` N ) ) = 1 ) ) |
270 |
265 268 240 269
|
syl3anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( ( abs ` A ) gcd ( abs ` N ) ) = 1 -> ( ( ( abs ` A ) ^ ( ( k - 1 ) / 2 ) ) gcd ( abs ` N ) ) = 1 ) ) |
271 |
256 270
|
mpd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( ( abs ` A ) ^ ( ( k - 1 ) / 2 ) ) gcd ( abs ` N ) ) = 1 ) |
272 |
250 252 271
|
3eqtr3d |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( A ^ ( ( k - 1 ) / 2 ) ) gcd N ) = 1 ) |
273 |
272
|
breq2d |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( k || ( ( A ^ ( ( k - 1 ) / 2 ) ) gcd N ) <-> k || 1 ) ) |
274 |
247 273
|
sylibd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( k || ( A ^ ( ( k - 1 ) / 2 ) ) -> k || 1 ) ) |
275 |
232 274
|
mtod |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> -. k || ( A ^ ( ( k - 1 ) / 2 ) ) ) |
276 |
|
prmnn |
|- ( k e. Prime -> k e. NN ) |
277 |
276
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> k e. NN ) |
278 |
277
|
ad2antrr |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k e. NN ) |
279 |
|
dvdsval3 |
|- ( ( k e. NN /\ ( A ^ ( ( k - 1 ) / 2 ) ) e. ZZ ) -> ( k || ( A ^ ( ( k - 1 ) / 2 ) ) <-> ( ( A ^ ( ( k - 1 ) / 2 ) ) mod k ) = 0 ) ) |
280 |
278 243 279
|
syl2anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( k || ( A ^ ( ( k - 1 ) / 2 ) ) <-> ( ( A ^ ( ( k - 1 ) / 2 ) ) mod k ) = 0 ) ) |
281 |
280
|
necon3bbid |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( -. k || ( A ^ ( ( k - 1 ) / 2 ) ) <-> ( ( A ^ ( ( k - 1 ) / 2 ) ) mod k ) =/= 0 ) ) |
282 |
275 281
|
mpbid |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( A ^ ( ( k - 1 ) / 2 ) ) mod k ) =/= 0 ) |
283 |
|
lgsvalmod |
|- ( ( A e. ZZ /\ k e. ( Prime \ { 2 } ) ) -> ( ( A /L k ) mod k ) = ( ( A ^ ( ( k - 1 ) / 2 ) ) mod k ) ) |
284 |
235 238 283
|
syl2anc |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( A /L k ) mod k ) = ( ( A ^ ( ( k - 1 ) / 2 ) ) mod k ) ) |
285 |
278
|
nnrpd |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> k e. RR+ ) |
286 |
|
0mod |
|- ( k e. RR+ -> ( 0 mod k ) = 0 ) |
287 |
285 286
|
syl |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( 0 mod k ) = 0 ) |
288 |
282 284 287
|
3netr4d |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( ( A /L k ) mod k ) =/= ( 0 mod k ) ) |
289 |
|
oveq1 |
|- ( ( A /L k ) = 0 -> ( ( A /L k ) mod k ) = ( 0 mod k ) ) |
290 |
289
|
necon3i |
|- ( ( ( A /L k ) mod k ) =/= ( 0 mod k ) -> ( A /L k ) =/= 0 ) |
291 |
288 290
|
syl |
|- ( ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) /\ k =/= 2 ) -> ( A /L k ) =/= 0 ) |
292 |
229 291
|
pm2.61dane |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> ( A /L k ) =/= 0 ) |
293 |
|
pczcl |
|- ( ( k e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( k pCnt N ) e. NN0 ) |
294 |
230 208 266 293
|
syl12anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( k pCnt N ) e. NN0 ) |
295 |
294
|
nn0zd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( k pCnt N ) e. ZZ ) |
296 |
295
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> ( k pCnt N ) e. ZZ ) |
297 |
|
neeq1 |
|- ( x = ( ( A /L k ) ^ ( k pCnt N ) ) -> ( x =/= 0 <-> ( ( A /L k ) ^ ( k pCnt N ) ) =/= 0 ) ) |
298 |
|
expclz |
|- ( ( ( A /L k ) e. CC /\ ( A /L k ) =/= 0 /\ ( k pCnt N ) e. ZZ ) -> ( ( A /L k ) ^ ( k pCnt N ) ) e. CC ) |
299 |
|
expne0i |
|- ( ( ( A /L k ) e. CC /\ ( A /L k ) =/= 0 /\ ( k pCnt N ) e. ZZ ) -> ( ( A /L k ) ^ ( k pCnt N ) ) =/= 0 ) |
300 |
297 298 299
|
elrabd |
|- ( ( ( A /L k ) e. CC /\ ( A /L k ) =/= 0 /\ ( k pCnt N ) e. ZZ ) -> ( ( A /L k ) ^ ( k pCnt N ) ) e. { x e. CC | x =/= 0 } ) |
301 |
201 292 296 300
|
syl3anc |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ k || N ) -> ( ( A /L k ) ^ ( k pCnt N ) ) e. { x e. CC | x =/= 0 } ) |
302 |
|
dvdsabsb |
|- ( ( k e. ZZ /\ N e. ZZ ) -> ( k || N <-> k || ( abs ` N ) ) ) |
303 |
197 208 302
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( k || N <-> k || ( abs ` N ) ) ) |
304 |
303
|
notbid |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( -. k || N <-> -. k || ( abs ` N ) ) ) |
305 |
|
pceq0 |
|- ( ( k e. Prime /\ ( abs ` N ) e. NN ) -> ( ( k pCnt ( abs ` N ) ) = 0 <-> -. k || ( abs ` N ) ) ) |
306 |
230 267 305
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( ( k pCnt ( abs ` N ) ) = 0 <-> -. k || ( abs ` N ) ) ) |
307 |
208 168
|
syl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> N e. QQ ) |
308 |
|
pcabs |
|- ( ( k e. Prime /\ N e. QQ ) -> ( k pCnt ( abs ` N ) ) = ( k pCnt N ) ) |
309 |
230 307 308
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( k pCnt ( abs ` N ) ) = ( k pCnt N ) ) |
310 |
309
|
eqeq1d |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( ( k pCnt ( abs ` N ) ) = 0 <-> ( k pCnt N ) = 0 ) ) |
311 |
304 306 310
|
3bitr2rd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( ( k pCnt N ) = 0 <-> -. k || N ) ) |
312 |
311
|
biimpar |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ -. k || N ) -> ( k pCnt N ) = 0 ) |
313 |
312
|
oveq2d |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ -. k || N ) -> ( ( A /L k ) ^ ( k pCnt N ) ) = ( ( A /L k ) ^ 0 ) ) |
314 |
200
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ -. k || N ) -> ( A /L k ) e. CC ) |
315 |
314
|
exp0d |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ -. k || N ) -> ( ( A /L k ) ^ 0 ) = 1 ) |
316 |
313 315
|
eqtrd |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ -. k || N ) -> ( ( A /L k ) ^ ( k pCnt N ) ) = 1 ) |
317 |
|
neeq1 |
|- ( x = 1 -> ( x =/= 0 <-> 1 =/= 0 ) ) |
318 |
317
|
elrab |
|- ( 1 e. { x e. CC | x =/= 0 } <-> ( 1 e. CC /\ 1 =/= 0 ) ) |
319 |
45 4 318
|
mpbir2an |
|- 1 e. { x e. CC | x =/= 0 } |
320 |
316 319
|
eqeltrdi |
|- ( ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) /\ -. k || N ) -> ( ( A /L k ) ^ ( k pCnt N ) ) e. { x e. CC | x =/= 0 } ) |
321 |
301 320
|
pm2.61dan |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt N ) ) e. { x e. CC | x =/= 0 } ) |
322 |
319
|
a1i |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ -. k e. Prime ) -> 1 e. { x e. CC | x =/= 0 } ) |
323 |
321 322
|
ifclda |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) e. { x e. CC | x =/= 0 } ) |
324 |
323
|
adantr |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) e. { x e. CC | x =/= 0 } ) |
325 |
194 324
|
eqeltrd |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. { x e. CC | x =/= 0 } ) |
326 |
|
neeq1 |
|- ( x = k -> ( x =/= 0 <-> k =/= 0 ) ) |
327 |
326
|
elrab |
|- ( k e. { x e. CC | x =/= 0 } <-> ( k e. CC /\ k =/= 0 ) ) |
328 |
|
neeq1 |
|- ( x = y -> ( x =/= 0 <-> y =/= 0 ) ) |
329 |
328
|
elrab |
|- ( y e. { x e. CC | x =/= 0 } <-> ( y e. CC /\ y =/= 0 ) ) |
330 |
|
mulcl |
|- ( ( k e. CC /\ y e. CC ) -> ( k x. y ) e. CC ) |
331 |
330
|
ad2ant2r |
|- ( ( ( k e. CC /\ k =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( k x. y ) e. CC ) |
332 |
|
mulne0 |
|- ( ( ( k e. CC /\ k =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( k x. y ) =/= 0 ) |
333 |
331 332
|
jca |
|- ( ( ( k e. CC /\ k =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( ( k x. y ) e. CC /\ ( k x. y ) =/= 0 ) ) |
334 |
327 329 333
|
syl2anb |
|- ( ( k e. { x e. CC | x =/= 0 } /\ y e. { x e. CC | x =/= 0 } ) -> ( ( k x. y ) e. CC /\ ( k x. y ) =/= 0 ) ) |
335 |
|
neeq1 |
|- ( x = ( k x. y ) -> ( x =/= 0 <-> ( k x. y ) =/= 0 ) ) |
336 |
335
|
elrab |
|- ( ( k x. y ) e. { x e. CC | x =/= 0 } <-> ( ( k x. y ) e. CC /\ ( k x. y ) =/= 0 ) ) |
337 |
334 336
|
sylibr |
|- ( ( k e. { x e. CC | x =/= 0 } /\ y e. { x e. CC | x =/= 0 } ) -> ( k x. y ) e. { x e. CC | x =/= 0 } ) |
338 |
337
|
adantl |
|- ( ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) /\ ( k e. { x e. CC | x =/= 0 } /\ y e. { x e. CC | x =/= 0 } ) ) -> ( k x. y ) e. { x e. CC | x =/= 0 } ) |
339 |
184 325 338
|
seqcl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. { x e. CC | x =/= 0 } ) |
340 |
|
neeq1 |
|- ( x = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) -> ( x =/= 0 <-> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) ) |
341 |
340
|
elrab |
|- ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. { x e. CC | x =/= 0 } <-> ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC /\ ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) ) |
342 |
341
|
simprbi |
|- ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. { x e. CC | x =/= 0 } -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) |
343 |
339 342
|
syl |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( A gcd N ) = 1 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) |
344 |
343
|
ex |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( A gcd N ) = 1 -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 ) ) |
345 |
183 344
|
impbid |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) =/= 0 <-> ( A gcd N ) = 1 ) ) |
346 |
38 61 345
|
3bitrd |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( A /L N ) =/= 0 <-> ( A gcd N ) = 1 ) ) |
347 |
346
|
3expa |
|- ( ( ( A e. ZZ /\ N e. ZZ ) /\ N =/= 0 ) -> ( ( A /L N ) =/= 0 <-> ( A gcd N ) = 1 ) ) |
348 |
35 347
|
pm2.61dane |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( ( A /L N ) =/= 0 <-> ( A gcd N ) = 1 ) ) |