| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue |  |-  ( A < 0 -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) | 
						
							| 3 | 2 | oveq1d |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = ( -u 1 x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( if ( N < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( N < 0 , -u 1 , 1 ) ) = ( -u 1 x. -u 1 ) ) | 
						
							| 5 |  | neg1mulneg1e1 |  |-  ( -u 1 x. -u 1 ) = 1 | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( if ( N < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( N < 0 , -u 1 , 1 ) ) = 1 ) | 
						
							| 7 |  | oveq2 |  |-  ( if ( N < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( N < 0 , -u 1 , 1 ) ) = ( -u 1 x. 1 ) ) | 
						
							| 8 |  | ax-1cn |  |-  1 e. CC | 
						
							| 9 | 8 | mulm1i |  |-  ( -u 1 x. 1 ) = -u 1 | 
						
							| 10 | 7 9 | eqtrdi |  |-  ( if ( N < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( N < 0 , -u 1 , 1 ) ) = -u 1 ) | 
						
							| 11 | 6 10 | ifsb |  |-  ( -u 1 x. if ( N < 0 , -u 1 , 1 ) ) = if ( N < 0 , 1 , -u 1 ) | 
						
							| 12 |  | simpr |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> A < 0 ) | 
						
							| 13 | 12 | biantrud |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( N < 0 <-> ( N < 0 /\ A < 0 ) ) ) | 
						
							| 14 | 13 | ifbid |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> if ( N < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( -u 1 x. if ( N < 0 , -u 1 , 1 ) ) = ( -u 1 x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 16 |  | simpl3 |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> N =/= 0 ) | 
						
							| 17 | 16 | necomd |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> 0 =/= N ) | 
						
							| 18 |  | simpl2 |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> N e. ZZ ) | 
						
							| 19 | 18 | zred |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> N e. RR ) | 
						
							| 20 |  | 0re |  |-  0 e. RR | 
						
							| 21 |  | ltlen |  |-  ( ( N e. RR /\ 0 e. RR ) -> ( N < 0 <-> ( N <_ 0 /\ 0 =/= N ) ) ) | 
						
							| 22 | 19 20 21 | sylancl |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( N < 0 <-> ( N <_ 0 /\ 0 =/= N ) ) ) | 
						
							| 23 | 17 22 | mpbiran2d |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( N < 0 <-> N <_ 0 ) ) | 
						
							| 24 | 19 | le0neg1d |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( N <_ 0 <-> 0 <_ -u N ) ) | 
						
							| 25 | 19 | renegcld |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> -u N e. RR ) | 
						
							| 26 |  | lenlt |  |-  ( ( 0 e. RR /\ -u N e. RR ) -> ( 0 <_ -u N <-> -. -u N < 0 ) ) | 
						
							| 27 | 20 25 26 | sylancr |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( 0 <_ -u N <-> -. -u N < 0 ) ) | 
						
							| 28 | 23 24 27 | 3bitrd |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( N < 0 <-> -. -u N < 0 ) ) | 
						
							| 29 | 28 | ifbid |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> if ( N < 0 , 1 , -u 1 ) = if ( -. -u N < 0 , 1 , -u 1 ) ) | 
						
							| 30 |  | ifnot |  |-  if ( -. -u N < 0 , 1 , -u 1 ) = if ( -u N < 0 , -u 1 , 1 ) | 
						
							| 31 | 29 30 | eqtrdi |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> if ( N < 0 , 1 , -u 1 ) = if ( -u N < 0 , -u 1 , 1 ) ) | 
						
							| 32 | 11 15 31 | 3eqtr3a |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( -u 1 x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = if ( -u N < 0 , -u 1 , 1 ) ) | 
						
							| 33 | 12 | biantrud |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( -u N < 0 <-> ( -u N < 0 /\ A < 0 ) ) ) | 
						
							| 34 | 33 | ifbid |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> if ( -u N < 0 , -u 1 , 1 ) = if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) ) | 
						
							| 35 | 3 32 34 | 3eqtrd |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) ) | 
						
							| 36 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 37 |  | iffalse |  |-  ( -. A < 0 -> if ( A < 0 , -u 1 , 1 ) = 1 ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) | 
						
							| 39 |  | simpr |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> -. A < 0 ) | 
						
							| 40 | 39 | intnand |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> -. ( N < 0 /\ A < 0 ) ) | 
						
							| 41 | 40 | iffalsed |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) | 
						
							| 42 | 38 41 | oveq12d |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = ( 1 x. 1 ) ) | 
						
							| 43 | 39 | intnand |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> -. ( -u N < 0 /\ A < 0 ) ) | 
						
							| 44 | 43 | iffalsed |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) | 
						
							| 45 | 36 42 44 | 3eqtr4a |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ -. A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) ) | 
						
							| 46 | 35 45 | pm2.61dan |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 48 |  | simpr |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> n e. Prime ) | 
						
							| 49 |  | simpl2 |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> N e. ZZ ) | 
						
							| 50 |  | zq |  |-  ( N e. ZZ -> N e. QQ ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> N e. QQ ) | 
						
							| 52 |  | pcneg |  |-  ( ( n e. Prime /\ N e. QQ ) -> ( n pCnt -u N ) = ( n pCnt N ) ) | 
						
							| 53 | 48 51 52 | syl2anc |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> ( n pCnt -u N ) = ( n pCnt N ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> ( ( A /L n ) ^ ( n pCnt -u N ) ) = ( ( A /L n ) ^ ( n pCnt N ) ) ) | 
						
							| 55 | 54 | ifeq1da |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) = if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 56 | 55 | mpteq2dv |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) | 
						
							| 57 | 56 | seqeq3d |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) ) = seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ) | 
						
							| 58 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 59 | 58 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> N e. CC ) | 
						
							| 60 | 59 | absnegd |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( abs ` -u N ) = ( abs ` N ) ) | 
						
							| 61 | 57 60 | fveq12d |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) ) ` ( abs ` -u N ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) | 
						
							| 62 | 47 61 | oveq12d |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) ) ` ( abs ` -u N ) ) ) = ( ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 63 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 64 | 63 8 | ifcli |  |-  if ( A < 0 , -u 1 , 1 ) e. CC | 
						
							| 65 | 64 | a1i |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> if ( A < 0 , -u 1 , 1 ) e. CC ) | 
						
							| 66 | 63 8 | ifcli |  |-  if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC | 
						
							| 67 | 66 | a1i |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) | 
						
							| 68 |  | nnabscl |  |-  ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 69 | 68 | 3adant1 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | 
						
							| 70 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 71 | 69 70 | eleqtrdi |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) | 
						
							| 72 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 73 | 72 | lgsfcl3 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) | 
						
							| 74 |  | elfznn |  |-  ( x e. ( 1 ... ( abs ` N ) ) -> x e. NN ) | 
						
							| 75 |  | ffvelcdm |  |-  ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ x e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` x ) e. ZZ ) | 
						
							| 76 | 73 74 75 | syl2an |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ x e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` x ) e. ZZ ) | 
						
							| 77 |  | zmulcl |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) | 
						
							| 78 | 77 | adantl |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) | 
						
							| 79 | 71 76 78 | seqcl |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. ZZ ) | 
						
							| 80 | 79 | zcnd |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) | 
						
							| 81 | 65 67 80 | mulassd |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( if ( A < 0 , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) = ( if ( A < 0 , -u 1 , 1 ) x. ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 82 | 62 81 | eqtrd |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) ) ` ( abs ` -u N ) ) ) = ( if ( A < 0 , -u 1 , 1 ) x. ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 83 |  | simp1 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> A e. ZZ ) | 
						
							| 84 |  | znegcl |  |-  ( N e. ZZ -> -u N e. ZZ ) | 
						
							| 85 | 84 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> -u N e. ZZ ) | 
						
							| 86 |  | simp3 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> N =/= 0 ) | 
						
							| 87 | 59 86 | negne0d |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> -u N =/= 0 ) | 
						
							| 88 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) | 
						
							| 89 | 88 | lgsval4 |  |-  ( ( A e. ZZ /\ -u N e. ZZ /\ -u N =/= 0 ) -> ( A /L -u N ) = ( if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) ) ` ( abs ` -u N ) ) ) ) | 
						
							| 90 | 83 85 87 89 | syl3anc |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( if ( ( -u N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt -u N ) ) , 1 ) ) ) ` ( abs ` -u N ) ) ) ) | 
						
							| 91 | 72 | lgsval4 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) | 
						
							| 92 | 91 | oveq2d |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) = ( if ( A < 0 , -u 1 , 1 ) x. ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) | 
						
							| 93 | 82 90 92 | 3eqtr4d |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L -u N ) = ( if ( A < 0 , -u 1 , 1 ) x. ( A /L N ) ) ) |