| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 2 |  | lgsne0 |  |-  ( ( A e. ZZ /\ P e. ZZ ) -> ( ( A /L P ) =/= 0 <-> ( A gcd P ) = 1 ) ) | 
						
							| 3 | 1 2 | sylan2 |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( ( A /L P ) =/= 0 <-> ( A gcd P ) = 1 ) ) | 
						
							| 4 |  | coprm |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) | 
						
							| 6 | 1 | anim1i |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P e. ZZ /\ A e. ZZ ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( P e. ZZ /\ A e. ZZ ) ) | 
						
							| 8 |  | gcdcom |  |-  ( ( P e. ZZ /\ A e. ZZ ) -> ( P gcd A ) = ( A gcd P ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( P gcd A ) = ( A gcd P ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( ( P gcd A ) = 1 <-> ( A gcd P ) = 1 ) ) | 
						
							| 11 | 5 10 | bitr2d |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( ( A gcd P ) = 1 <-> -. P || A ) ) | 
						
							| 12 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 13 |  | dvdsval3 |  |-  ( ( P e. NN /\ A e. ZZ ) -> ( P || A <-> ( A mod P ) = 0 ) ) | 
						
							| 14 | 12 13 | sylan |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P || A <-> ( A mod P ) = 0 ) ) | 
						
							| 15 | 14 | ancoms |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( P || A <-> ( A mod P ) = 0 ) ) | 
						
							| 16 | 15 | notbid |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( -. P || A <-> -. ( A mod P ) = 0 ) ) | 
						
							| 17 | 3 11 16 | 3bitrd |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( ( A /L P ) =/= 0 <-> -. ( A mod P ) = 0 ) ) | 
						
							| 18 | 17 | necon4abid |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( ( A /L P ) = 0 <-> ( A mod P ) = 0 ) ) |