Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
2 |
1
|
adantl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. Prime ) |
3 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. ZZ ) |
5 |
|
simpl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> A e. ZZ ) |
6 |
4 5
|
gcdcomd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( P gcd A ) = ( A gcd P ) ) |
7 |
6
|
eqeq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( P gcd A ) = 1 <-> ( A gcd P ) = 1 ) ) |
8 |
|
coprm |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
9 |
2 5 8
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) |
10 |
|
lgsne0 |
|- ( ( A e. ZZ /\ P e. ZZ ) -> ( ( A /L P ) =/= 0 <-> ( A gcd P ) = 1 ) ) |
11 |
5 4 10
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) =/= 0 <-> ( A gcd P ) = 1 ) ) |
12 |
7 9 11
|
3bitr4d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( -. P || A <-> ( A /L P ) =/= 0 ) ) |
13 |
12
|
necon4bbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( P || A <-> ( A /L P ) = 0 ) ) |
14 |
|
0ne1 |
|- 0 =/= 1 |
15 |
|
neeq1 |
|- ( ( A /L P ) = 0 -> ( ( A /L P ) =/= 1 <-> 0 =/= 1 ) ) |
16 |
14 15
|
mpbiri |
|- ( ( A /L P ) = 0 -> ( A /L P ) =/= 1 ) |
17 |
13 16
|
syl6bi |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( P || A -> ( A /L P ) =/= 1 ) ) |
18 |
17
|
necon2bd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> -. P || A ) ) |
19 |
|
lgsqrlem5 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) |
20 |
19
|
3expia |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) ) |
21 |
18 20
|
jcad |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> ( -. P || A /\ E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) ) ) |
22 |
|
simprl |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> x e. ZZ ) |
23 |
22
|
zred |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> x e. RR ) |
24 |
|
absresq |
|- ( x e. RR -> ( ( abs ` x ) ^ 2 ) = ( x ^ 2 ) ) |
25 |
23 24
|
syl |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( abs ` x ) ^ 2 ) = ( x ^ 2 ) ) |
26 |
25
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( ( abs ` x ) ^ 2 ) /L P ) = ( ( x ^ 2 ) /L P ) ) |
27 |
|
simplr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> -. P || A ) |
28 |
1
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> P e. Prime ) |
29 |
28 3
|
syl |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> P e. ZZ ) |
30 |
|
zsqcl |
|- ( x e. ZZ -> ( x ^ 2 ) e. ZZ ) |
31 |
22 30
|
syl |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( x ^ 2 ) e. ZZ ) |
32 |
|
simplll |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> A e. ZZ ) |
33 |
|
simprr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> P || ( ( x ^ 2 ) - A ) ) |
34 |
|
dvdssub2 |
|- ( ( ( P e. ZZ /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) /\ P || ( ( x ^ 2 ) - A ) ) -> ( P || ( x ^ 2 ) <-> P || A ) ) |
35 |
29 31 32 33 34
|
syl31anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( P || ( x ^ 2 ) <-> P || A ) ) |
36 |
27 35
|
mtbird |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> -. P || ( x ^ 2 ) ) |
37 |
|
2nn |
|- 2 e. NN |
38 |
37
|
a1i |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> 2 e. NN ) |
39 |
|
prmdvdsexp |
|- ( ( P e. Prime /\ x e. ZZ /\ 2 e. NN ) -> ( P || ( x ^ 2 ) <-> P || x ) ) |
40 |
28 22 38 39
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( P || ( x ^ 2 ) <-> P || x ) ) |
41 |
36 40
|
mtbid |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> -. P || x ) |
42 |
|
dvds0 |
|- ( P e. ZZ -> P || 0 ) |
43 |
29 42
|
syl |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> P || 0 ) |
44 |
|
breq2 |
|- ( x = 0 -> ( P || x <-> P || 0 ) ) |
45 |
43 44
|
syl5ibrcom |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( x = 0 -> P || x ) ) |
46 |
45
|
necon3bd |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( -. P || x -> x =/= 0 ) ) |
47 |
41 46
|
mpd |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> x =/= 0 ) |
48 |
|
nnabscl |
|- ( ( x e. ZZ /\ x =/= 0 ) -> ( abs ` x ) e. NN ) |
49 |
22 47 48
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( abs ` x ) e. NN ) |
50 |
49
|
nnzd |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( abs ` x ) e. ZZ ) |
51 |
49
|
nnne0d |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( abs ` x ) =/= 0 ) |
52 |
50 29
|
gcdcomd |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( abs ` x ) gcd P ) = ( P gcd ( abs ` x ) ) ) |
53 |
|
dvdsabsb |
|- ( ( P e. ZZ /\ x e. ZZ ) -> ( P || x <-> P || ( abs ` x ) ) ) |
54 |
29 22 53
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( P || x <-> P || ( abs ` x ) ) ) |
55 |
41 54
|
mtbid |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> -. P || ( abs ` x ) ) |
56 |
|
coprm |
|- ( ( P e. Prime /\ ( abs ` x ) e. ZZ ) -> ( -. P || ( abs ` x ) <-> ( P gcd ( abs ` x ) ) = 1 ) ) |
57 |
28 50 56
|
syl2anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( -. P || ( abs ` x ) <-> ( P gcd ( abs ` x ) ) = 1 ) ) |
58 |
55 57
|
mpbid |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( P gcd ( abs ` x ) ) = 1 ) |
59 |
52 58
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( abs ` x ) gcd P ) = 1 ) |
60 |
|
lgssq |
|- ( ( ( ( abs ` x ) e. ZZ /\ ( abs ` x ) =/= 0 ) /\ P e. ZZ /\ ( ( abs ` x ) gcd P ) = 1 ) -> ( ( ( abs ` x ) ^ 2 ) /L P ) = 1 ) |
61 |
50 51 29 59 60
|
syl211anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( ( abs ` x ) ^ 2 ) /L P ) = 1 ) |
62 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
63 |
28 62
|
syl |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> P e. NN ) |
64 |
|
moddvds |
|- ( ( P e. NN /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) |
65 |
63 31 32 64
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) |
66 |
33 65
|
mpbird |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( x ^ 2 ) mod P ) = ( A mod P ) ) |
67 |
66
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( ( x ^ 2 ) mod P ) /L P ) = ( ( A mod P ) /L P ) ) |
68 |
|
eldifsni |
|- ( P e. ( Prime \ { 2 } ) -> P =/= 2 ) |
69 |
68
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> P =/= 2 ) |
70 |
69
|
necomd |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> 2 =/= P ) |
71 |
|
2z |
|- 2 e. ZZ |
72 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
73 |
71 72
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
74 |
|
dvdsprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( 2 || P <-> 2 = P ) ) |
75 |
74
|
necon3bbid |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ P e. Prime ) -> ( -. 2 || P <-> 2 =/= P ) ) |
76 |
73 28 75
|
sylancr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( -. 2 || P <-> 2 =/= P ) ) |
77 |
70 76
|
mpbird |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> -. 2 || P ) |
78 |
|
lgsmod |
|- ( ( ( x ^ 2 ) e. ZZ /\ P e. NN /\ -. 2 || P ) -> ( ( ( x ^ 2 ) mod P ) /L P ) = ( ( x ^ 2 ) /L P ) ) |
79 |
31 63 77 78
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( ( x ^ 2 ) mod P ) /L P ) = ( ( x ^ 2 ) /L P ) ) |
80 |
|
lgsmod |
|- ( ( A e. ZZ /\ P e. NN /\ -. 2 || P ) -> ( ( A mod P ) /L P ) = ( A /L P ) ) |
81 |
32 63 77 80
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( A mod P ) /L P ) = ( A /L P ) ) |
82 |
67 79 81
|
3eqtr3d |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( ( x ^ 2 ) /L P ) = ( A /L P ) ) |
83 |
26 61 82
|
3eqtr3rd |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) /\ ( x e. ZZ /\ P || ( ( x ^ 2 ) - A ) ) ) -> ( A /L P ) = 1 ) |
84 |
83
|
rexlimdvaa |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ -. P || A ) -> ( E. x e. ZZ P || ( ( x ^ 2 ) - A ) -> ( A /L P ) = 1 ) ) |
85 |
84
|
expimpd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( -. P || A /\ E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) -> ( A /L P ) = 1 ) ) |
86 |
21 85
|
impbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 <-> ( -. P || A /\ E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) ) ) |