Step |
Hyp |
Ref |
Expression |
1 |
|
lgsqr.y |
|- Y = ( Z/nZ ` P ) |
2 |
|
lgsqr.s |
|- S = ( Poly1 ` Y ) |
3 |
|
lgsqr.b |
|- B = ( Base ` S ) |
4 |
|
lgsqr.d |
|- D = ( deg1 ` Y ) |
5 |
|
lgsqr.o |
|- O = ( eval1 ` Y ) |
6 |
|
lgsqr.e |
|- .^ = ( .g ` ( mulGrp ` S ) ) |
7 |
|
lgsqr.x |
|- X = ( var1 ` Y ) |
8 |
|
lgsqr.m |
|- .- = ( -g ` S ) |
9 |
|
lgsqr.u |
|- .1. = ( 1r ` S ) |
10 |
|
lgsqr.t |
|- T = ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) |
11 |
|
lgsqr.l |
|- L = ( ZRHom ` Y ) |
12 |
|
lgsqr.1 |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
13 |
|
lgsqrlem1.3 |
|- ( ph -> A e. ZZ ) |
14 |
|
lgsqrlem1.4 |
|- ( ph -> ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( 1 mod P ) ) |
15 |
10
|
fveq2i |
|- ( O ` T ) = ( O ` ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) ) |
16 |
15
|
fveq1i |
|- ( ( O ` T ) ` ( L ` A ) ) = ( ( O ` ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) ) ` ( L ` A ) ) |
17 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
18 |
12
|
eldifad |
|- ( ph -> P e. Prime ) |
19 |
1
|
znfld |
|- ( P e. Prime -> Y e. Field ) |
20 |
18 19
|
syl |
|- ( ph -> Y e. Field ) |
21 |
|
fldidom |
|- ( Y e. Field -> Y e. IDomn ) |
22 |
20 21
|
syl |
|- ( ph -> Y e. IDomn ) |
23 |
|
isidom |
|- ( Y e. IDomn <-> ( Y e. CRing /\ Y e. Domn ) ) |
24 |
23
|
simplbi |
|- ( Y e. IDomn -> Y e. CRing ) |
25 |
22 24
|
syl |
|- ( ph -> Y e. CRing ) |
26 |
|
crngring |
|- ( Y e. CRing -> Y e. Ring ) |
27 |
25 26
|
syl |
|- ( ph -> Y e. Ring ) |
28 |
11
|
zrhrhm |
|- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
29 |
27 28
|
syl |
|- ( ph -> L e. ( ZZring RingHom Y ) ) |
30 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
31 |
30 17
|
rhmf |
|- ( L e. ( ZZring RingHom Y ) -> L : ZZ --> ( Base ` Y ) ) |
32 |
29 31
|
syl |
|- ( ph -> L : ZZ --> ( Base ` Y ) ) |
33 |
32 13
|
ffvelrnd |
|- ( ph -> ( L ` A ) e. ( Base ` Y ) ) |
34 |
5 7 17 2 3 25 33
|
evl1vard |
|- ( ph -> ( X e. B /\ ( ( O ` X ) ` ( L ` A ) ) = ( L ` A ) ) ) |
35 |
|
eqid |
|- ( .g ` ( mulGrp ` Y ) ) = ( .g ` ( mulGrp ` Y ) ) |
36 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
37 |
12 36
|
syl |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN ) |
38 |
37
|
nnnn0d |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN0 ) |
39 |
5 2 17 3 25 33 34 6 35 38
|
evl1expd |
|- ( ph -> ( ( ( ( P - 1 ) / 2 ) .^ X ) e. B /\ ( ( O ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ` ( L ` A ) ) = ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` Y ) ) ( L ` A ) ) ) ) |
40 |
|
zringmpg |
|- ( ( mulGrp ` CCfld ) |`s ZZ ) = ( mulGrp ` ZZring ) |
41 |
|
eqid |
|- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
42 |
40 41
|
rhmmhm |
|- ( L e. ( ZZring RingHom Y ) -> L e. ( ( ( mulGrp ` CCfld ) |`s ZZ ) MndHom ( mulGrp ` Y ) ) ) |
43 |
29 42
|
syl |
|- ( ph -> L e. ( ( ( mulGrp ` CCfld ) |`s ZZ ) MndHom ( mulGrp ` Y ) ) ) |
44 |
40 30
|
mgpbas |
|- ZZ = ( Base ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) |
45 |
|
eqid |
|- ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) = ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) |
46 |
44 45 35
|
mhmmulg |
|- ( ( L e. ( ( ( mulGrp ` CCfld ) |`s ZZ ) MndHom ( mulGrp ` Y ) ) /\ ( ( P - 1 ) / 2 ) e. NN0 /\ A e. ZZ ) -> ( L ` ( ( ( P - 1 ) / 2 ) ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) A ) ) = ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` Y ) ) ( L ` A ) ) ) |
47 |
43 38 13 46
|
syl3anc |
|- ( ph -> ( L ` ( ( ( P - 1 ) / 2 ) ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) A ) ) = ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` Y ) ) ( L ` A ) ) ) |
48 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
49 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
50 |
49
|
subrgsubm |
|- ( ZZ e. ( SubRing ` CCfld ) -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
51 |
48 50
|
mp1i |
|- ( ph -> ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) |
52 |
|
eqid |
|- ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) |
53 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s ZZ ) = ( ( mulGrp ` CCfld ) |`s ZZ ) |
54 |
52 53 45
|
submmulg |
|- ( ( ZZ e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ ( ( P - 1 ) / 2 ) e. NN0 /\ A e. ZZ ) -> ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( ( P - 1 ) / 2 ) ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) A ) ) |
55 |
51 38 13 54
|
syl3anc |
|- ( ph -> ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( ( ( P - 1 ) / 2 ) ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) A ) ) |
56 |
13
|
zcnd |
|- ( ph -> A e. CC ) |
57 |
|
cnfldexp |
|- ( ( A e. CC /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
58 |
56 38 57
|
syl2anc |
|- ( ph -> ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` CCfld ) ) A ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
59 |
55 58
|
eqtr3d |
|- ( ph -> ( ( ( P - 1 ) / 2 ) ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) A ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
60 |
59
|
fveq2d |
|- ( ph -> ( L ` ( ( ( P - 1 ) / 2 ) ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) A ) ) = ( L ` ( A ^ ( ( P - 1 ) / 2 ) ) ) ) |
61 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
62 |
18 61
|
syl |
|- ( ph -> P e. NN ) |
63 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
64 |
13 38 63
|
syl2anc |
|- ( ph -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
65 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
66 |
|
moddvds |
|- ( ( P e. NN /\ ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
67 |
62 64 65 66
|
syl3anc |
|- ( ph -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( 1 mod P ) <-> P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
68 |
14 67
|
mpbid |
|- ( ph -> P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) |
69 |
62
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
70 |
1 11
|
zndvds |
|- ( ( P e. NN0 /\ ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( L ` ( A ^ ( ( P - 1 ) / 2 ) ) ) = ( L ` 1 ) <-> P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
71 |
69 64 65 70
|
syl3anc |
|- ( ph -> ( ( L ` ( A ^ ( ( P - 1 ) / 2 ) ) ) = ( L ` 1 ) <-> P || ( ( A ^ ( ( P - 1 ) / 2 ) ) - 1 ) ) ) |
72 |
68 71
|
mpbird |
|- ( ph -> ( L ` ( A ^ ( ( P - 1 ) / 2 ) ) ) = ( L ` 1 ) ) |
73 |
|
zring1 |
|- 1 = ( 1r ` ZZring ) |
74 |
|
eqid |
|- ( 1r ` Y ) = ( 1r ` Y ) |
75 |
73 74
|
rhm1 |
|- ( L e. ( ZZring RingHom Y ) -> ( L ` 1 ) = ( 1r ` Y ) ) |
76 |
29 75
|
syl |
|- ( ph -> ( L ` 1 ) = ( 1r ` Y ) ) |
77 |
60 72 76
|
3eqtrd |
|- ( ph -> ( L ` ( ( ( P - 1 ) / 2 ) ( .g ` ( ( mulGrp ` CCfld ) |`s ZZ ) ) A ) ) = ( 1r ` Y ) ) |
78 |
47 77
|
eqtr3d |
|- ( ph -> ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` Y ) ) ( L ` A ) ) = ( 1r ` Y ) ) |
79 |
78
|
eqeq2d |
|- ( ph -> ( ( ( O ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ` ( L ` A ) ) = ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` Y ) ) ( L ` A ) ) <-> ( ( O ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ` ( L ` A ) ) = ( 1r ` Y ) ) ) |
80 |
79
|
anbi2d |
|- ( ph -> ( ( ( ( ( P - 1 ) / 2 ) .^ X ) e. B /\ ( ( O ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ` ( L ` A ) ) = ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` Y ) ) ( L ` A ) ) ) <-> ( ( ( ( P - 1 ) / 2 ) .^ X ) e. B /\ ( ( O ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ` ( L ` A ) ) = ( 1r ` Y ) ) ) ) |
81 |
39 80
|
mpbid |
|- ( ph -> ( ( ( ( P - 1 ) / 2 ) .^ X ) e. B /\ ( ( O ` ( ( ( P - 1 ) / 2 ) .^ X ) ) ` ( L ` A ) ) = ( 1r ` Y ) ) ) |
82 |
|
eqid |
|- ( algSc ` S ) = ( algSc ` S ) |
83 |
17 74
|
ringidcl |
|- ( Y e. Ring -> ( 1r ` Y ) e. ( Base ` Y ) ) |
84 |
27 83
|
syl |
|- ( ph -> ( 1r ` Y ) e. ( Base ` Y ) ) |
85 |
5 2 17 82 3 25 84 33
|
evl1scad |
|- ( ph -> ( ( ( algSc ` S ) ` ( 1r ` Y ) ) e. B /\ ( ( O ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) ` ( L ` A ) ) = ( 1r ` Y ) ) ) |
86 |
2 82 74 9
|
ply1scl1 |
|- ( Y e. Ring -> ( ( algSc ` S ) ` ( 1r ` Y ) ) = .1. ) |
87 |
27 86
|
syl |
|- ( ph -> ( ( algSc ` S ) ` ( 1r ` Y ) ) = .1. ) |
88 |
87
|
eleq1d |
|- ( ph -> ( ( ( algSc ` S ) ` ( 1r ` Y ) ) e. B <-> .1. e. B ) ) |
89 |
87
|
fveq2d |
|- ( ph -> ( O ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) = ( O ` .1. ) ) |
90 |
89
|
fveq1d |
|- ( ph -> ( ( O ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) ` ( L ` A ) ) = ( ( O ` .1. ) ` ( L ` A ) ) ) |
91 |
90
|
eqeq1d |
|- ( ph -> ( ( ( O ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) ` ( L ` A ) ) = ( 1r ` Y ) <-> ( ( O ` .1. ) ` ( L ` A ) ) = ( 1r ` Y ) ) ) |
92 |
88 91
|
anbi12d |
|- ( ph -> ( ( ( ( algSc ` S ) ` ( 1r ` Y ) ) e. B /\ ( ( O ` ( ( algSc ` S ) ` ( 1r ` Y ) ) ) ` ( L ` A ) ) = ( 1r ` Y ) ) <-> ( .1. e. B /\ ( ( O ` .1. ) ` ( L ` A ) ) = ( 1r ` Y ) ) ) ) |
93 |
85 92
|
mpbid |
|- ( ph -> ( .1. e. B /\ ( ( O ` .1. ) ` ( L ` A ) ) = ( 1r ` Y ) ) ) |
94 |
|
eqid |
|- ( -g ` Y ) = ( -g ` Y ) |
95 |
5 2 17 3 25 33 81 93 8 94
|
evl1subd |
|- ( ph -> ( ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) e. B /\ ( ( O ` ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) ) ` ( L ` A ) ) = ( ( 1r ` Y ) ( -g ` Y ) ( 1r ` Y ) ) ) ) |
96 |
95
|
simprd |
|- ( ph -> ( ( O ` ( ( ( ( P - 1 ) / 2 ) .^ X ) .- .1. ) ) ` ( L ` A ) ) = ( ( 1r ` Y ) ( -g ` Y ) ( 1r ` Y ) ) ) |
97 |
16 96
|
syl5eq |
|- ( ph -> ( ( O ` T ) ` ( L ` A ) ) = ( ( 1r ` Y ) ( -g ` Y ) ( 1r ` Y ) ) ) |
98 |
|
ringgrp |
|- ( Y e. Ring -> Y e. Grp ) |
99 |
27 98
|
syl |
|- ( ph -> Y e. Grp ) |
100 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
101 |
17 100 94
|
grpsubid |
|- ( ( Y e. Grp /\ ( 1r ` Y ) e. ( Base ` Y ) ) -> ( ( 1r ` Y ) ( -g ` Y ) ( 1r ` Y ) ) = ( 0g ` Y ) ) |
102 |
99 84 101
|
syl2anc |
|- ( ph -> ( ( 1r ` Y ) ( -g ` Y ) ( 1r ` Y ) ) = ( 0g ` Y ) ) |
103 |
97 102
|
eqtrd |
|- ( ph -> ( ( O ` T ) ` ( L ` A ) ) = ( 0g ` Y ) ) |