| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Z/nZ ` P ) = ( Z/nZ ` P ) | 
						
							| 2 |  | eqid |  |-  ( Poly1 ` ( Z/nZ ` P ) ) = ( Poly1 ` ( Z/nZ ` P ) ) | 
						
							| 3 |  | eqid |  |-  ( Base ` ( Poly1 ` ( Z/nZ ` P ) ) ) = ( Base ` ( Poly1 ` ( Z/nZ ` P ) ) ) | 
						
							| 4 |  | eqid |  |-  ( deg1 ` ( Z/nZ ` P ) ) = ( deg1 ` ( Z/nZ ` P ) ) | 
						
							| 5 |  | eqid |  |-  ( eval1 ` ( Z/nZ ` P ) ) = ( eval1 ` ( Z/nZ ` P ) ) | 
						
							| 6 |  | eqid |  |-  ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) = ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) | 
						
							| 7 |  | eqid |  |-  ( var1 ` ( Z/nZ ` P ) ) = ( var1 ` ( Z/nZ ` P ) ) | 
						
							| 8 |  | eqid |  |-  ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) = ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) = ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) | 
						
							| 10 |  | eqid |  |-  ( ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) ( var1 ` ( Z/nZ ` P ) ) ) ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) = ( ( ( ( P - 1 ) / 2 ) ( .g ` ( mulGrp ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) ( var1 ` ( Z/nZ ` P ) ) ) ( -g ` ( Poly1 ` ( Z/nZ ` P ) ) ) ( 1r ` ( Poly1 ` ( Z/nZ ` P ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( ZRHom ` ( Z/nZ ` P ) ) = ( ZRHom ` ( Z/nZ ` P ) ) | 
						
							| 12 |  | simp2 |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 13 |  | eqid |  |-  ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( ( ZRHom ` ( Z/nZ ` P ) ) ` ( y ^ 2 ) ) ) = ( y e. ( 1 ... ( ( P - 1 ) / 2 ) ) |-> ( ( ZRHom ` ( Z/nZ ` P ) ) ` ( y ^ 2 ) ) ) | 
						
							| 14 |  | simp1 |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> A e. ZZ ) | 
						
							| 15 |  | simp3 |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> ( A /L P ) = 1 ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | lgsqrlem4 |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) /\ ( A /L P ) = 1 ) -> E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) |