Step |
Hyp |
Ref |
Expression |
1 |
|
lgsqr |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 <-> ( -. P || A /\ E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) ) ) |
2 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
4 |
2 3
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. NN ) |
5 |
4
|
ad2antlr |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> P e. NN ) |
6 |
|
zsqcl |
|- ( x e. ZZ -> ( x ^ 2 ) e. ZZ ) |
7 |
6
|
adantl |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> ( x ^ 2 ) e. ZZ ) |
8 |
|
simpll |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> A e. ZZ ) |
9 |
|
moddvds |
|- ( ( P e. NN /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) |
10 |
5 7 8 9
|
syl3anc |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) |
11 |
10
|
biimprd |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) |
12 |
11
|
reximdva |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( E. x e. ZZ P || ( ( x ^ 2 ) - A ) -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) |
13 |
12
|
adantld |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( -. P || A /\ E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) |
14 |
1 13
|
sylbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) |