Step |
Hyp |
Ref |
Expression |
1 |
|
lgsqrmod |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) |
2 |
1
|
imp |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) |
3 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
4 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
5 |
3 4
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. NN ) |
6 |
5
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> P e. NN ) |
7 |
|
zsqcl |
|- ( x e. ZZ -> ( x ^ 2 ) e. ZZ ) |
8 |
7
|
adantl |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( x ^ 2 ) e. ZZ ) |
9 |
|
simplll |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> A e. ZZ ) |
10 |
|
moddvds |
|- ( ( P e. NN /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) |
11 |
6 8 9 10
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) |
12 |
5
|
nnzd |
|- ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) |
13 |
12
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> P e. ZZ ) |
14 |
13 8 9
|
3jca |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P e. ZZ /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) ) |
15 |
14
|
adantl |
|- ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P e. ZZ /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) ) |
16 |
|
dvdssub2 |
|- ( ( ( P e. ZZ /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) /\ P || ( ( x ^ 2 ) - A ) ) -> ( P || ( x ^ 2 ) <-> P || A ) ) |
17 |
15 16
|
sylan |
|- ( ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) /\ P || ( ( x ^ 2 ) - A ) ) -> ( P || ( x ^ 2 ) <-> P || A ) ) |
18 |
17
|
ex |
|- ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P || ( ( x ^ 2 ) - A ) -> ( P || ( x ^ 2 ) <-> P || A ) ) ) |
19 |
|
bicom |
|- ( ( P || ( x ^ 2 ) <-> P || A ) <-> ( P || A <-> P || ( x ^ 2 ) ) ) |
20 |
3
|
ad3antlr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> P e. Prime ) |
21 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> x e. ZZ ) |
22 |
|
2nn |
|- 2 e. NN |
23 |
22
|
a1i |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> 2 e. NN ) |
24 |
|
prmdvdsexp |
|- ( ( P e. Prime /\ x e. ZZ /\ 2 e. NN ) -> ( P || ( x ^ 2 ) <-> P || x ) ) |
25 |
20 21 23 24
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( x ^ 2 ) <-> P || x ) ) |
26 |
25
|
biimparc |
|- ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> P || ( x ^ 2 ) ) |
27 |
|
bianir |
|- ( ( P || ( x ^ 2 ) /\ ( P || A <-> P || ( x ^ 2 ) ) ) -> P || A ) |
28 |
5
|
ad2antlr |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> P e. NN ) |
29 |
|
dvdsmod0 |
|- ( ( P e. NN /\ P || A ) -> ( A mod P ) = 0 ) |
30 |
29
|
ex |
|- ( P e. NN -> ( P || A -> ( A mod P ) = 0 ) ) |
31 |
28 30
|
syl |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( P || A -> ( A mod P ) = 0 ) ) |
32 |
|
lgsprme0 |
|- ( ( A e. ZZ /\ P e. Prime ) -> ( ( A /L P ) = 0 <-> ( A mod P ) = 0 ) ) |
33 |
3 32
|
sylan2 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 0 <-> ( A mod P ) = 0 ) ) |
34 |
|
eqeq1 |
|- ( ( A /L P ) = 0 -> ( ( A /L P ) = 1 <-> 0 = 1 ) ) |
35 |
|
0ne1 |
|- 0 =/= 1 |
36 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> -. P || x ) ) |
37 |
35 36
|
mpi |
|- ( 0 = 1 -> -. P || x ) |
38 |
34 37
|
syl6bi |
|- ( ( A /L P ) = 0 -> ( ( A /L P ) = 1 -> -. P || x ) ) |
39 |
33 38
|
syl6bir |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A mod P ) = 0 -> ( ( A /L P ) = 1 -> -. P || x ) ) ) |
40 |
39
|
com23 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> ( ( A mod P ) = 0 -> -. P || x ) ) ) |
41 |
40
|
imp |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( ( A mod P ) = 0 -> -. P || x ) ) |
42 |
31 41
|
syld |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( P || A -> -. P || x ) ) |
43 |
42
|
ad2antrl |
|- ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P || A -> -. P || x ) ) |
44 |
27 43
|
syl5com |
|- ( ( P || ( x ^ 2 ) /\ ( P || A <-> P || ( x ^ 2 ) ) ) -> ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> -. P || x ) ) |
45 |
44
|
ex |
|- ( P || ( x ^ 2 ) -> ( ( P || A <-> P || ( x ^ 2 ) ) -> ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> -. P || x ) ) ) |
46 |
45
|
com23 |
|- ( P || ( x ^ 2 ) -> ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( ( P || A <-> P || ( x ^ 2 ) ) -> -. P || x ) ) ) |
47 |
26 46
|
mpcom |
|- ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( ( P || A <-> P || ( x ^ 2 ) ) -> -. P || x ) ) |
48 |
19 47
|
syl5bi |
|- ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( ( P || ( x ^ 2 ) <-> P || A ) -> -. P || x ) ) |
49 |
18 48
|
syld |
|- ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) |
50 |
49
|
ex |
|- ( P || x -> ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) ) |
51 |
|
2a1 |
|- ( -. P || x -> ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) ) |
52 |
50 51
|
pm2.61i |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) |
53 |
11 52
|
sylbid |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) -> -. P || x ) ) |
54 |
53
|
ancld |
|- ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) ) |
55 |
54
|
reximdva |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) -> E. x e. ZZ ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) ) |
56 |
2 55
|
mpd |
|- ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> E. x e. ZZ ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) |
57 |
56
|
ex |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> E. x e. ZZ ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) ) |