Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> P e. ( Prime \ { 2 } ) ) |
2 |
|
simp2 |
|- ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> Q e. ( Prime \ { 2 } ) ) |
3 |
|
simp3 |
|- ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> P =/= Q ) |
4 |
|
eqid |
|- ( ( P - 1 ) / 2 ) = ( ( P - 1 ) / 2 ) |
5 |
|
eqid |
|- ( ( Q - 1 ) / 2 ) = ( ( Q - 1 ) / 2 ) |
6 |
|
eleq1w |
|- ( x = z -> ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) <-> z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) |
7 |
|
eleq1w |
|- ( y = w -> ( y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) <-> w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) ) |
8 |
6 7
|
bi2anan9 |
|- ( ( x = z /\ y = w ) -> ( ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) <-> ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) ) ) |
9 |
|
oveq1 |
|- ( y = w -> ( y x. P ) = ( w x. P ) ) |
10 |
|
oveq1 |
|- ( x = z -> ( x x. Q ) = ( z x. Q ) ) |
11 |
9 10
|
breqan12rd |
|- ( ( x = z /\ y = w ) -> ( ( y x. P ) < ( x x. Q ) <-> ( w x. P ) < ( z x. Q ) ) ) |
12 |
8 11
|
anbi12d |
|- ( ( x = z /\ y = w ) -> ( ( ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( y x. P ) < ( x x. Q ) ) <-> ( ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( w x. P ) < ( z x. Q ) ) ) ) |
13 |
12
|
cbvopabv |
|- { <. x , y >. | ( ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( y x. P ) < ( x x. Q ) ) } = { <. z , w >. | ( ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( w x. P ) < ( z x. Q ) ) } |
14 |
1 2 3 4 5 13
|
lgsquadlem3 |
|- ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> ( ( P /L Q ) x. ( Q /L P ) ) = ( -u 1 ^ ( ( ( P - 1 ) / 2 ) x. ( ( Q - 1 ) / 2 ) ) ) ) |