| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsquad2.1 |
|- ( ph -> M e. NN ) |
| 2 |
|
lgsquad2.2 |
|- ( ph -> -. 2 || M ) |
| 3 |
|
lgsquad2.3 |
|- ( ph -> N e. NN ) |
| 4 |
|
lgsquad2.4 |
|- ( ph -> -. 2 || N ) |
| 5 |
|
lgsquad2.5 |
|- ( ph -> ( M gcd N ) = 1 ) |
| 6 |
|
lgsquad2lem1.a |
|- ( ph -> A e. NN ) |
| 7 |
|
lgsquad2lem1.b |
|- ( ph -> B e. NN ) |
| 8 |
|
lgsquad2lem1.m |
|- ( ph -> ( A x. B ) = M ) |
| 9 |
|
lgsquad2lem1.1 |
|- ( ph -> ( ( A /L N ) x. ( N /L A ) ) = ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 10 |
|
lgsquad2lem1.2 |
|- ( ph -> ( ( B /L N ) x. ( N /L B ) ) = ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 11 |
6
|
nnzd |
|- ( ph -> A e. ZZ ) |
| 12 |
11
|
zcnd |
|- ( ph -> A e. CC ) |
| 13 |
|
ax-1cn |
|- 1 e. CC |
| 14 |
|
npcan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A ) |
| 15 |
12 13 14
|
sylancl |
|- ( ph -> ( ( A - 1 ) + 1 ) = A ) |
| 16 |
7
|
nnzd |
|- ( ph -> B e. ZZ ) |
| 17 |
16
|
zcnd |
|- ( ph -> B e. CC ) |
| 18 |
|
npcan |
|- ( ( B e. CC /\ 1 e. CC ) -> ( ( B - 1 ) + 1 ) = B ) |
| 19 |
17 13 18
|
sylancl |
|- ( ph -> ( ( B - 1 ) + 1 ) = B ) |
| 20 |
15 19
|
oveq12d |
|- ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( A x. B ) ) |
| 21 |
|
peano2zm |
|- ( A e. ZZ -> ( A - 1 ) e. ZZ ) |
| 22 |
11 21
|
syl |
|- ( ph -> ( A - 1 ) e. ZZ ) |
| 23 |
22
|
zcnd |
|- ( ph -> ( A - 1 ) e. CC ) |
| 24 |
13
|
a1i |
|- ( ph -> 1 e. CC ) |
| 25 |
|
peano2zm |
|- ( B e. ZZ -> ( B - 1 ) e. ZZ ) |
| 26 |
16 25
|
syl |
|- ( ph -> ( B - 1 ) e. ZZ ) |
| 27 |
26
|
zcnd |
|- ( ph -> ( B - 1 ) e. CC ) |
| 28 |
23 24 27 24
|
muladdd |
|- ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) + ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) ) ) |
| 29 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 30 |
29
|
a1i |
|- ( ph -> ( 1 x. 1 ) = 1 ) |
| 31 |
30
|
oveq2d |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) ) |
| 32 |
23
|
mulridd |
|- ( ph -> ( ( A - 1 ) x. 1 ) = ( A - 1 ) ) |
| 33 |
27
|
mulridd |
|- ( ph -> ( ( B - 1 ) x. 1 ) = ( B - 1 ) ) |
| 34 |
32 33
|
oveq12d |
|- ( ph -> ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) = ( ( A - 1 ) + ( B - 1 ) ) ) |
| 35 |
31 34
|
oveq12d |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) + ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
| 36 |
28 35
|
eqtrd |
|- ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
| 37 |
20 36
|
eqtr3d |
|- ( ph -> ( A x. B ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
| 38 |
8 37
|
eqtr3d |
|- ( ph -> M = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
| 39 |
38
|
oveq1d |
|- ( ph -> ( M - 1 ) = ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) - 1 ) ) |
| 40 |
23 27
|
mulcld |
|- ( ph -> ( ( A - 1 ) x. ( B - 1 ) ) e. CC ) |
| 41 |
|
addcl |
|- ( ( ( ( A - 1 ) x. ( B - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) e. CC ) |
| 42 |
40 13 41
|
sylancl |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) e. CC ) |
| 43 |
23 27
|
addcld |
|- ( ph -> ( ( A - 1 ) + ( B - 1 ) ) e. CC ) |
| 44 |
42 43 24
|
addsubd |
|- ( ph -> ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) - 1 ) = ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
| 45 |
|
pncan |
|- ( ( ( ( A - 1 ) x. ( B - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) = ( ( A - 1 ) x. ( B - 1 ) ) ) |
| 46 |
40 13 45
|
sylancl |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) = ( ( A - 1 ) x. ( B - 1 ) ) ) |
| 47 |
46
|
oveq1d |
|- ( ph -> ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
| 48 |
39 44 47
|
3eqtrd |
|- ( ph -> ( M - 1 ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
| 49 |
48
|
oveq1d |
|- ( ph -> ( ( M - 1 ) / 2 ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) / 2 ) ) |
| 50 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 51 |
|
2ne0 |
|- 2 =/= 0 |
| 52 |
51
|
a1i |
|- ( ph -> 2 =/= 0 ) |
| 53 |
40 43 50 52
|
divdird |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) / 2 ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) + ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) ) ) |
| 54 |
23 27 50 52
|
divassd |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) = ( ( A - 1 ) x. ( ( B - 1 ) / 2 ) ) ) |
| 55 |
23 50 52
|
divcan2d |
|- ( ph -> ( 2 x. ( ( A - 1 ) / 2 ) ) = ( A - 1 ) ) |
| 56 |
55
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( A - 1 ) / 2 ) ) x. ( ( B - 1 ) / 2 ) ) = ( ( A - 1 ) x. ( ( B - 1 ) / 2 ) ) ) |
| 57 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) |
| 58 |
11 16 57
|
syl2anc |
|- ( ph -> A || ( A x. B ) ) |
| 59 |
58 8
|
breqtrd |
|- ( ph -> A || M ) |
| 60 |
|
2z |
|- 2 e. ZZ |
| 61 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 62 |
|
dvdstr |
|- ( ( 2 e. ZZ /\ A e. ZZ /\ M e. ZZ ) -> ( ( 2 || A /\ A || M ) -> 2 || M ) ) |
| 63 |
60 11 61 62
|
mp3an2i |
|- ( ph -> ( ( 2 || A /\ A || M ) -> 2 || M ) ) |
| 64 |
59 63
|
mpan2d |
|- ( ph -> ( 2 || A -> 2 || M ) ) |
| 65 |
2 64
|
mtod |
|- ( ph -> -. 2 || A ) |
| 66 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 67 |
|
2prm |
|- 2 e. Prime |
| 68 |
|
nprmdvds1 |
|- ( 2 e. Prime -> -. 2 || 1 ) |
| 69 |
67 68
|
mp1i |
|- ( ph -> -. 2 || 1 ) |
| 70 |
|
omoe |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( A - 1 ) ) |
| 71 |
11 65 66 69 70
|
syl22anc |
|- ( ph -> 2 || ( A - 1 ) ) |
| 72 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( A - 1 ) e. ZZ ) -> ( 2 || ( A - 1 ) <-> ( ( A - 1 ) / 2 ) e. ZZ ) ) |
| 73 |
60 52 22 72
|
mp3an2i |
|- ( ph -> ( 2 || ( A - 1 ) <-> ( ( A - 1 ) / 2 ) e. ZZ ) ) |
| 74 |
71 73
|
mpbid |
|- ( ph -> ( ( A - 1 ) / 2 ) e. ZZ ) |
| 75 |
74
|
zcnd |
|- ( ph -> ( ( A - 1 ) / 2 ) e. CC ) |
| 76 |
|
dvdsmul2 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B || ( A x. B ) ) |
| 77 |
11 16 76
|
syl2anc |
|- ( ph -> B || ( A x. B ) ) |
| 78 |
77 8
|
breqtrd |
|- ( ph -> B || M ) |
| 79 |
|
dvdstr |
|- ( ( 2 e. ZZ /\ B e. ZZ /\ M e. ZZ ) -> ( ( 2 || B /\ B || M ) -> 2 || M ) ) |
| 80 |
60 16 61 79
|
mp3an2i |
|- ( ph -> ( ( 2 || B /\ B || M ) -> 2 || M ) ) |
| 81 |
78 80
|
mpan2d |
|- ( ph -> ( 2 || B -> 2 || M ) ) |
| 82 |
2 81
|
mtod |
|- ( ph -> -. 2 || B ) |
| 83 |
|
omoe |
|- ( ( ( B e. ZZ /\ -. 2 || B ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( B - 1 ) ) |
| 84 |
16 82 66 69 83
|
syl22anc |
|- ( ph -> 2 || ( B - 1 ) ) |
| 85 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( B - 1 ) e. ZZ ) -> ( 2 || ( B - 1 ) <-> ( ( B - 1 ) / 2 ) e. ZZ ) ) |
| 86 |
60 52 26 85
|
mp3an2i |
|- ( ph -> ( 2 || ( B - 1 ) <-> ( ( B - 1 ) / 2 ) e. ZZ ) ) |
| 87 |
84 86
|
mpbid |
|- ( ph -> ( ( B - 1 ) / 2 ) e. ZZ ) |
| 88 |
87
|
zcnd |
|- ( ph -> ( ( B - 1 ) / 2 ) e. CC ) |
| 89 |
50 75 88
|
mulassd |
|- ( ph -> ( ( 2 x. ( ( A - 1 ) / 2 ) ) x. ( ( B - 1 ) / 2 ) ) = ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) ) |
| 90 |
54 56 89
|
3eqtr2d |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) = ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) ) |
| 91 |
23 27 50 52
|
divdird |
|- ( ph -> ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) = ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) |
| 92 |
90 91
|
oveq12d |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) + ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) ) = ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) ) |
| 93 |
49 53 92
|
3eqtrd |
|- ( ph -> ( ( M - 1 ) / 2 ) = ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) ) |
| 94 |
93
|
oveq1d |
|- ( ph -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) ) |
| 95 |
60
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 96 |
74 87
|
zmulcld |
|- ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) e. ZZ ) |
| 97 |
95 96
|
zmulcld |
|- ( ph -> ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) e. ZZ ) |
| 98 |
97
|
zcnd |
|- ( ph -> ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) e. CC ) |
| 99 |
74 87
|
zaddcld |
|- ( ph -> ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) e. ZZ ) |
| 100 |
99
|
zcnd |
|- ( ph -> ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) e. CC ) |
| 101 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 102 |
|
omoe |
|- ( ( ( N e. ZZ /\ -. 2 || N ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( N - 1 ) ) |
| 103 |
101 4 66 69 102
|
syl22anc |
|- ( ph -> 2 || ( N - 1 ) ) |
| 104 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 105 |
101 104
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 106 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 107 |
60 52 105 106
|
mp3an2i |
|- ( ph -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
| 108 |
103 107
|
mpbid |
|- ( ph -> ( ( N - 1 ) / 2 ) e. ZZ ) |
| 109 |
108
|
zcnd |
|- ( ph -> ( ( N - 1 ) / 2 ) e. CC ) |
| 110 |
98 100 109
|
adddird |
|- ( ph -> ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 111 |
96
|
zcnd |
|- ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) e. CC ) |
| 112 |
50 111 109
|
mulassd |
|- ( ph -> ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) = ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 113 |
112
|
oveq1d |
|- ( ph -> ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 114 |
94 110 113
|
3eqtrd |
|- ( ph -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 115 |
114
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 116 |
|
neg1cn |
|- -u 1 e. CC |
| 117 |
116
|
a1i |
|- ( ph -> -u 1 e. CC ) |
| 118 |
|
neg1ne0 |
|- -u 1 =/= 0 |
| 119 |
118
|
a1i |
|- ( ph -> -u 1 =/= 0 ) |
| 120 |
96 108
|
zmulcld |
|- ( ph -> ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
| 121 |
95 120
|
zmulcld |
|- ( ph -> ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. ZZ ) |
| 122 |
99 108
|
zmulcld |
|- ( ph -> ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
| 123 |
|
expaddz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. ZZ /\ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 124 |
117 119 121 122 123
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 125 |
|
expmulz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 126 |
117 119 95 120 125
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 127 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
| 128 |
127
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) |
| 129 |
|
1exp |
|- ( ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ -> ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) |
| 130 |
120 129
|
syl |
|- ( ph -> ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) |
| 131 |
128 130
|
eqtrid |
|- ( ph -> ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) |
| 132 |
126 131
|
eqtrd |
|- ( ph -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = 1 ) |
| 133 |
132
|
oveq1d |
|- ( ph -> ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 134 |
124 133
|
eqtrd |
|- ( ph -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 135 |
117 119 122
|
expclzd |
|- ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. CC ) |
| 136 |
135
|
mullidd |
|- ( ph -> ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 137 |
75 88 109
|
adddird |
|- ( ph -> ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 138 |
137
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 139 |
136 138
|
eqtrd |
|- ( ph -> ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 140 |
115 134 139
|
3eqtrd |
|- ( ph -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 141 |
9 10
|
oveq12d |
|- ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 142 |
74 108
|
zmulcld |
|- ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
| 143 |
87 108
|
zmulcld |
|- ( ph -> ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
| 144 |
|
expaddz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ /\ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 145 |
117 119 142 143 144
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 146 |
141 145
|
eqtr4d |
|- ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 147 |
|
lgscl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) |
| 148 |
11 101 147
|
syl2anc |
|- ( ph -> ( A /L N ) e. ZZ ) |
| 149 |
148
|
zcnd |
|- ( ph -> ( A /L N ) e. CC ) |
| 150 |
|
lgscl |
|- ( ( B e. ZZ /\ N e. ZZ ) -> ( B /L N ) e. ZZ ) |
| 151 |
16 101 150
|
syl2anc |
|- ( ph -> ( B /L N ) e. ZZ ) |
| 152 |
151
|
zcnd |
|- ( ph -> ( B /L N ) e. CC ) |
| 153 |
|
lgscl |
|- ( ( N e. ZZ /\ A e. ZZ ) -> ( N /L A ) e. ZZ ) |
| 154 |
101 11 153
|
syl2anc |
|- ( ph -> ( N /L A ) e. ZZ ) |
| 155 |
154
|
zcnd |
|- ( ph -> ( N /L A ) e. CC ) |
| 156 |
|
lgscl |
|- ( ( N e. ZZ /\ B e. ZZ ) -> ( N /L B ) e. ZZ ) |
| 157 |
101 16 156
|
syl2anc |
|- ( ph -> ( N /L B ) e. ZZ ) |
| 158 |
157
|
zcnd |
|- ( ph -> ( N /L B ) e. CC ) |
| 159 |
149 152 155 158
|
mul4d |
|- ( ph -> ( ( ( A /L N ) x. ( B /L N ) ) x. ( ( N /L A ) x. ( N /L B ) ) ) = ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) ) |
| 160 |
6
|
nnne0d |
|- ( ph -> A =/= 0 ) |
| 161 |
7
|
nnne0d |
|- ( ph -> B =/= 0 ) |
| 162 |
|
lgsdir |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
| 163 |
11 16 101 160 161 162
|
syl32anc |
|- ( ph -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
| 164 |
8
|
oveq1d |
|- ( ph -> ( ( A x. B ) /L N ) = ( M /L N ) ) |
| 165 |
163 164
|
eqtr3d |
|- ( ph -> ( ( A /L N ) x. ( B /L N ) ) = ( M /L N ) ) |
| 166 |
|
lgsdi |
|- ( ( ( N e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( N /L ( A x. B ) ) = ( ( N /L A ) x. ( N /L B ) ) ) |
| 167 |
101 11 16 160 161 166
|
syl32anc |
|- ( ph -> ( N /L ( A x. B ) ) = ( ( N /L A ) x. ( N /L B ) ) ) |
| 168 |
8
|
oveq2d |
|- ( ph -> ( N /L ( A x. B ) ) = ( N /L M ) ) |
| 169 |
167 168
|
eqtr3d |
|- ( ph -> ( ( N /L A ) x. ( N /L B ) ) = ( N /L M ) ) |
| 170 |
165 169
|
oveq12d |
|- ( ph -> ( ( ( A /L N ) x. ( B /L N ) ) x. ( ( N /L A ) x. ( N /L B ) ) ) = ( ( M /L N ) x. ( N /L M ) ) ) |
| 171 |
159 170
|
eqtr3d |
|- ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( ( M /L N ) x. ( N /L M ) ) ) |
| 172 |
140 146 171
|
3eqtr2rd |
|- ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |