Step |
Hyp |
Ref |
Expression |
1 |
|
lgsquad2.1 |
|- ( ph -> M e. NN ) |
2 |
|
lgsquad2.2 |
|- ( ph -> -. 2 || M ) |
3 |
|
lgsquad2.3 |
|- ( ph -> N e. NN ) |
4 |
|
lgsquad2.4 |
|- ( ph -> -. 2 || N ) |
5 |
|
lgsquad2.5 |
|- ( ph -> ( M gcd N ) = 1 ) |
6 |
|
lgsquad2lem1.a |
|- ( ph -> A e. NN ) |
7 |
|
lgsquad2lem1.b |
|- ( ph -> B e. NN ) |
8 |
|
lgsquad2lem1.m |
|- ( ph -> ( A x. B ) = M ) |
9 |
|
lgsquad2lem1.1 |
|- ( ph -> ( ( A /L N ) x. ( N /L A ) ) = ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
10 |
|
lgsquad2lem1.2 |
|- ( ph -> ( ( B /L N ) x. ( N /L B ) ) = ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
11 |
6
|
nnzd |
|- ( ph -> A e. ZZ ) |
12 |
11
|
zcnd |
|- ( ph -> A e. CC ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
npcan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A ) |
15 |
12 13 14
|
sylancl |
|- ( ph -> ( ( A - 1 ) + 1 ) = A ) |
16 |
7
|
nnzd |
|- ( ph -> B e. ZZ ) |
17 |
16
|
zcnd |
|- ( ph -> B e. CC ) |
18 |
|
npcan |
|- ( ( B e. CC /\ 1 e. CC ) -> ( ( B - 1 ) + 1 ) = B ) |
19 |
17 13 18
|
sylancl |
|- ( ph -> ( ( B - 1 ) + 1 ) = B ) |
20 |
15 19
|
oveq12d |
|- ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( A x. B ) ) |
21 |
|
peano2zm |
|- ( A e. ZZ -> ( A - 1 ) e. ZZ ) |
22 |
11 21
|
syl |
|- ( ph -> ( A - 1 ) e. ZZ ) |
23 |
22
|
zcnd |
|- ( ph -> ( A - 1 ) e. CC ) |
24 |
13
|
a1i |
|- ( ph -> 1 e. CC ) |
25 |
|
peano2zm |
|- ( B e. ZZ -> ( B - 1 ) e. ZZ ) |
26 |
16 25
|
syl |
|- ( ph -> ( B - 1 ) e. ZZ ) |
27 |
26
|
zcnd |
|- ( ph -> ( B - 1 ) e. CC ) |
28 |
23 24 27 24
|
muladdd |
|- ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) + ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) ) ) |
29 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
30 |
29
|
a1i |
|- ( ph -> ( 1 x. 1 ) = 1 ) |
31 |
30
|
oveq2d |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) ) |
32 |
23
|
mulid1d |
|- ( ph -> ( ( A - 1 ) x. 1 ) = ( A - 1 ) ) |
33 |
27
|
mulid1d |
|- ( ph -> ( ( B - 1 ) x. 1 ) = ( B - 1 ) ) |
34 |
32 33
|
oveq12d |
|- ( ph -> ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) = ( ( A - 1 ) + ( B - 1 ) ) ) |
35 |
31 34
|
oveq12d |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) + ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
36 |
28 35
|
eqtrd |
|- ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
37 |
20 36
|
eqtr3d |
|- ( ph -> ( A x. B ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
38 |
8 37
|
eqtr3d |
|- ( ph -> M = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
39 |
38
|
oveq1d |
|- ( ph -> ( M - 1 ) = ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) - 1 ) ) |
40 |
23 27
|
mulcld |
|- ( ph -> ( ( A - 1 ) x. ( B - 1 ) ) e. CC ) |
41 |
|
addcl |
|- ( ( ( ( A - 1 ) x. ( B - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) e. CC ) |
42 |
40 13 41
|
sylancl |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) e. CC ) |
43 |
23 27
|
addcld |
|- ( ph -> ( ( A - 1 ) + ( B - 1 ) ) e. CC ) |
44 |
42 43 24
|
addsubd |
|- ( ph -> ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) - 1 ) = ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
45 |
|
pncan |
|- ( ( ( ( A - 1 ) x. ( B - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) = ( ( A - 1 ) x. ( B - 1 ) ) ) |
46 |
40 13 45
|
sylancl |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) = ( ( A - 1 ) x. ( B - 1 ) ) ) |
47 |
46
|
oveq1d |
|- ( ph -> ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
48 |
39 44 47
|
3eqtrd |
|- ( ph -> ( M - 1 ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) |
49 |
48
|
oveq1d |
|- ( ph -> ( ( M - 1 ) / 2 ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) / 2 ) ) |
50 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
51 |
|
2ne0 |
|- 2 =/= 0 |
52 |
51
|
a1i |
|- ( ph -> 2 =/= 0 ) |
53 |
40 43 50 52
|
divdird |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) / 2 ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) + ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) ) ) |
54 |
23 27 50 52
|
divassd |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) = ( ( A - 1 ) x. ( ( B - 1 ) / 2 ) ) ) |
55 |
23 50 52
|
divcan2d |
|- ( ph -> ( 2 x. ( ( A - 1 ) / 2 ) ) = ( A - 1 ) ) |
56 |
55
|
oveq1d |
|- ( ph -> ( ( 2 x. ( ( A - 1 ) / 2 ) ) x. ( ( B - 1 ) / 2 ) ) = ( ( A - 1 ) x. ( ( B - 1 ) / 2 ) ) ) |
57 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) |
58 |
11 16 57
|
syl2anc |
|- ( ph -> A || ( A x. B ) ) |
59 |
58 8
|
breqtrd |
|- ( ph -> A || M ) |
60 |
|
2z |
|- 2 e. ZZ |
61 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
62 |
|
dvdstr |
|- ( ( 2 e. ZZ /\ A e. ZZ /\ M e. ZZ ) -> ( ( 2 || A /\ A || M ) -> 2 || M ) ) |
63 |
60 11 61 62
|
mp3an2i |
|- ( ph -> ( ( 2 || A /\ A || M ) -> 2 || M ) ) |
64 |
59 63
|
mpan2d |
|- ( ph -> ( 2 || A -> 2 || M ) ) |
65 |
2 64
|
mtod |
|- ( ph -> -. 2 || A ) |
66 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
67 |
|
2prm |
|- 2 e. Prime |
68 |
|
nprmdvds1 |
|- ( 2 e. Prime -> -. 2 || 1 ) |
69 |
67 68
|
mp1i |
|- ( ph -> -. 2 || 1 ) |
70 |
|
omoe |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( A - 1 ) ) |
71 |
11 65 66 69 70
|
syl22anc |
|- ( ph -> 2 || ( A - 1 ) ) |
72 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( A - 1 ) e. ZZ ) -> ( 2 || ( A - 1 ) <-> ( ( A - 1 ) / 2 ) e. ZZ ) ) |
73 |
60 52 22 72
|
mp3an2i |
|- ( ph -> ( 2 || ( A - 1 ) <-> ( ( A - 1 ) / 2 ) e. ZZ ) ) |
74 |
71 73
|
mpbid |
|- ( ph -> ( ( A - 1 ) / 2 ) e. ZZ ) |
75 |
74
|
zcnd |
|- ( ph -> ( ( A - 1 ) / 2 ) e. CC ) |
76 |
|
dvdsmul2 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B || ( A x. B ) ) |
77 |
11 16 76
|
syl2anc |
|- ( ph -> B || ( A x. B ) ) |
78 |
77 8
|
breqtrd |
|- ( ph -> B || M ) |
79 |
|
dvdstr |
|- ( ( 2 e. ZZ /\ B e. ZZ /\ M e. ZZ ) -> ( ( 2 || B /\ B || M ) -> 2 || M ) ) |
80 |
60 16 61 79
|
mp3an2i |
|- ( ph -> ( ( 2 || B /\ B || M ) -> 2 || M ) ) |
81 |
78 80
|
mpan2d |
|- ( ph -> ( 2 || B -> 2 || M ) ) |
82 |
2 81
|
mtod |
|- ( ph -> -. 2 || B ) |
83 |
|
omoe |
|- ( ( ( B e. ZZ /\ -. 2 || B ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( B - 1 ) ) |
84 |
16 82 66 69 83
|
syl22anc |
|- ( ph -> 2 || ( B - 1 ) ) |
85 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( B - 1 ) e. ZZ ) -> ( 2 || ( B - 1 ) <-> ( ( B - 1 ) / 2 ) e. ZZ ) ) |
86 |
60 52 26 85
|
mp3an2i |
|- ( ph -> ( 2 || ( B - 1 ) <-> ( ( B - 1 ) / 2 ) e. ZZ ) ) |
87 |
84 86
|
mpbid |
|- ( ph -> ( ( B - 1 ) / 2 ) e. ZZ ) |
88 |
87
|
zcnd |
|- ( ph -> ( ( B - 1 ) / 2 ) e. CC ) |
89 |
50 75 88
|
mulassd |
|- ( ph -> ( ( 2 x. ( ( A - 1 ) / 2 ) ) x. ( ( B - 1 ) / 2 ) ) = ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) ) |
90 |
54 56 89
|
3eqtr2d |
|- ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) = ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) ) |
91 |
23 27 50 52
|
divdird |
|- ( ph -> ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) = ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) |
92 |
90 91
|
oveq12d |
|- ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) + ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) ) = ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) ) |
93 |
49 53 92
|
3eqtrd |
|- ( ph -> ( ( M - 1 ) / 2 ) = ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) ) |
94 |
93
|
oveq1d |
|- ( ph -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) ) |
95 |
60
|
a1i |
|- ( ph -> 2 e. ZZ ) |
96 |
74 87
|
zmulcld |
|- ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) e. ZZ ) |
97 |
95 96
|
zmulcld |
|- ( ph -> ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) e. ZZ ) |
98 |
97
|
zcnd |
|- ( ph -> ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) e. CC ) |
99 |
74 87
|
zaddcld |
|- ( ph -> ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) e. ZZ ) |
100 |
99
|
zcnd |
|- ( ph -> ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) e. CC ) |
101 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
102 |
|
omoe |
|- ( ( ( N e. ZZ /\ -. 2 || N ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( N - 1 ) ) |
103 |
101 4 66 69 102
|
syl22anc |
|- ( ph -> 2 || ( N - 1 ) ) |
104 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
105 |
101 104
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
106 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
107 |
60 52 105 106
|
mp3an2i |
|- ( ph -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
108 |
103 107
|
mpbid |
|- ( ph -> ( ( N - 1 ) / 2 ) e. ZZ ) |
109 |
108
|
zcnd |
|- ( ph -> ( ( N - 1 ) / 2 ) e. CC ) |
110 |
98 100 109
|
adddird |
|- ( ph -> ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
111 |
96
|
zcnd |
|- ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) e. CC ) |
112 |
50 111 109
|
mulassd |
|- ( ph -> ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) = ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
113 |
112
|
oveq1d |
|- ( ph -> ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
114 |
94 110 113
|
3eqtrd |
|- ( ph -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
115 |
114
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
116 |
|
neg1cn |
|- -u 1 e. CC |
117 |
116
|
a1i |
|- ( ph -> -u 1 e. CC ) |
118 |
|
neg1ne0 |
|- -u 1 =/= 0 |
119 |
118
|
a1i |
|- ( ph -> -u 1 =/= 0 ) |
120 |
96 108
|
zmulcld |
|- ( ph -> ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
121 |
95 120
|
zmulcld |
|- ( ph -> ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. ZZ ) |
122 |
99 108
|
zmulcld |
|- ( ph -> ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
123 |
|
expaddz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. ZZ /\ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
124 |
117 119 121 122 123
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
125 |
|
expmulz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
126 |
117 119 95 120 125
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
127 |
|
neg1sqe1 |
|- ( -u 1 ^ 2 ) = 1 |
128 |
127
|
oveq1i |
|- ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) |
129 |
|
1exp |
|- ( ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ -> ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) |
130 |
120 129
|
syl |
|- ( ph -> ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) |
131 |
128 130
|
eqtrid |
|- ( ph -> ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) |
132 |
126 131
|
eqtrd |
|- ( ph -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = 1 ) |
133 |
132
|
oveq1d |
|- ( ph -> ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
134 |
124 133
|
eqtrd |
|- ( ph -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
135 |
117 119 122
|
expclzd |
|- ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. CC ) |
136 |
135
|
mulid2d |
|- ( ph -> ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) |
137 |
75 88 109
|
adddird |
|- ( ph -> ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
138 |
137
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
139 |
136 138
|
eqtrd |
|- ( ph -> ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
140 |
115 134 139
|
3eqtrd |
|- ( ph -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
141 |
9 10
|
oveq12d |
|- ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
142 |
74 108
|
zmulcld |
|- ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
143 |
87 108
|
zmulcld |
|- ( ph -> ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
144 |
|
expaddz |
|- ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ /\ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
145 |
117 119 142 143 144
|
syl22anc |
|- ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
146 |
141 145
|
eqtr4d |
|- ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
147 |
|
lgscl |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) |
148 |
11 101 147
|
syl2anc |
|- ( ph -> ( A /L N ) e. ZZ ) |
149 |
148
|
zcnd |
|- ( ph -> ( A /L N ) e. CC ) |
150 |
|
lgscl |
|- ( ( B e. ZZ /\ N e. ZZ ) -> ( B /L N ) e. ZZ ) |
151 |
16 101 150
|
syl2anc |
|- ( ph -> ( B /L N ) e. ZZ ) |
152 |
151
|
zcnd |
|- ( ph -> ( B /L N ) e. CC ) |
153 |
|
lgscl |
|- ( ( N e. ZZ /\ A e. ZZ ) -> ( N /L A ) e. ZZ ) |
154 |
101 11 153
|
syl2anc |
|- ( ph -> ( N /L A ) e. ZZ ) |
155 |
154
|
zcnd |
|- ( ph -> ( N /L A ) e. CC ) |
156 |
|
lgscl |
|- ( ( N e. ZZ /\ B e. ZZ ) -> ( N /L B ) e. ZZ ) |
157 |
101 16 156
|
syl2anc |
|- ( ph -> ( N /L B ) e. ZZ ) |
158 |
157
|
zcnd |
|- ( ph -> ( N /L B ) e. CC ) |
159 |
149 152 155 158
|
mul4d |
|- ( ph -> ( ( ( A /L N ) x. ( B /L N ) ) x. ( ( N /L A ) x. ( N /L B ) ) ) = ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) ) |
160 |
6
|
nnne0d |
|- ( ph -> A =/= 0 ) |
161 |
7
|
nnne0d |
|- ( ph -> B =/= 0 ) |
162 |
|
lgsdir |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
163 |
11 16 101 160 161 162
|
syl32anc |
|- ( ph -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
164 |
8
|
oveq1d |
|- ( ph -> ( ( A x. B ) /L N ) = ( M /L N ) ) |
165 |
163 164
|
eqtr3d |
|- ( ph -> ( ( A /L N ) x. ( B /L N ) ) = ( M /L N ) ) |
166 |
|
lgsdi |
|- ( ( ( N e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( N /L ( A x. B ) ) = ( ( N /L A ) x. ( N /L B ) ) ) |
167 |
101 11 16 160 161 166
|
syl32anc |
|- ( ph -> ( N /L ( A x. B ) ) = ( ( N /L A ) x. ( N /L B ) ) ) |
168 |
8
|
oveq2d |
|- ( ph -> ( N /L ( A x. B ) ) = ( N /L M ) ) |
169 |
167 168
|
eqtr3d |
|- ( ph -> ( ( N /L A ) x. ( N /L B ) ) = ( N /L M ) ) |
170 |
165 169
|
oveq12d |
|- ( ph -> ( ( ( A /L N ) x. ( B /L N ) ) x. ( ( N /L A ) x. ( N /L B ) ) ) = ( ( M /L N ) x. ( N /L M ) ) ) |
171 |
159 170
|
eqtr3d |
|- ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( ( M /L N ) x. ( N /L M ) ) ) |
172 |
140 146 171
|
3eqtr2rd |
|- ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |