| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsquad2.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | lgsquad2.2 |  |-  ( ph -> -. 2 || M ) | 
						
							| 3 |  | lgsquad2.3 |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | lgsquad2.4 |  |-  ( ph -> -. 2 || N ) | 
						
							| 5 |  | lgsquad2.5 |  |-  ( ph -> ( M gcd N ) = 1 ) | 
						
							| 6 |  | lgsquad2lem2.f |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 7 |  | lgsquad2lem2.s |  |-  ( ps <-> A. x e. ( 1 ... k ) ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 8 |  | 2nn |  |-  2 e. NN | 
						
							| 9 | 8 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 10 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 11 |  | 2z |  |-  2 e. ZZ | 
						
							| 12 |  | gcdcom |  |-  ( ( M e. ZZ /\ 2 e. ZZ ) -> ( M gcd 2 ) = ( 2 gcd M ) ) | 
						
							| 13 | 10 11 12 | sylancl |  |-  ( ph -> ( M gcd 2 ) = ( 2 gcd M ) ) | 
						
							| 14 |  | 2prm |  |-  2 e. Prime | 
						
							| 15 |  | coprm |  |-  ( ( 2 e. Prime /\ M e. ZZ ) -> ( -. 2 || M <-> ( 2 gcd M ) = 1 ) ) | 
						
							| 16 | 14 10 15 | sylancr |  |-  ( ph -> ( -. 2 || M <-> ( 2 gcd M ) = 1 ) ) | 
						
							| 17 | 2 16 | mpbid |  |-  ( ph -> ( 2 gcd M ) = 1 ) | 
						
							| 18 | 13 17 | eqtrd |  |-  ( ph -> ( M gcd 2 ) = 1 ) | 
						
							| 19 |  | rpmulgcd |  |-  ( ( ( M e. NN /\ 2 e. NN /\ N e. NN ) /\ ( M gcd 2 ) = 1 ) -> ( M gcd ( 2 x. N ) ) = ( M gcd N ) ) | 
						
							| 20 | 1 9 3 18 19 | syl31anc |  |-  ( ph -> ( M gcd ( 2 x. N ) ) = ( M gcd N ) ) | 
						
							| 21 | 20 5 | eqtrd |  |-  ( ph -> ( M gcd ( 2 x. N ) ) = 1 ) | 
						
							| 22 |  | oveq1 |  |-  ( m = 1 -> ( m /L N ) = ( 1 /L N ) ) | 
						
							| 23 |  | oveq2 |  |-  ( m = 1 -> ( N /L m ) = ( N /L 1 ) ) | 
						
							| 24 | 22 23 | oveq12d |  |-  ( m = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( ( 1 /L N ) x. ( N /L 1 ) ) ) | 
						
							| 25 |  | oveq1 |  |-  ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) | 
						
							| 26 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 27 | 25 26 | eqtrdi |  |-  ( m = 1 -> ( m - 1 ) = 0 ) | 
						
							| 28 | 27 | oveq1d |  |-  ( m = 1 -> ( ( m - 1 ) / 2 ) = ( 0 / 2 ) ) | 
						
							| 29 |  | 2cn |  |-  2 e. CC | 
						
							| 30 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 31 | 29 30 | div0i |  |-  ( 0 / 2 ) = 0 | 
						
							| 32 | 28 31 | eqtrdi |  |-  ( m = 1 -> ( ( m - 1 ) / 2 ) = 0 ) | 
						
							| 33 | 32 | oveq1d |  |-  ( m = 1 -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( 0 x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 34 | 33 | oveq2d |  |-  ( m = 1 -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 35 | 24 34 | eqeq12d |  |-  ( m = 1 -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 36 | 35 | imbi2d |  |-  ( m = 1 -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 37 | 36 | imbi2d |  |-  ( m = 1 -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 38 |  | oveq1 |  |-  ( m = x -> ( m gcd ( 2 x. N ) ) = ( x gcd ( 2 x. N ) ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( m = x -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( x gcd ( 2 x. N ) ) = 1 ) ) | 
						
							| 40 |  | oveq1 |  |-  ( m = x -> ( m /L N ) = ( x /L N ) ) | 
						
							| 41 |  | oveq2 |  |-  ( m = x -> ( N /L m ) = ( N /L x ) ) | 
						
							| 42 | 40 41 | oveq12d |  |-  ( m = x -> ( ( m /L N ) x. ( N /L m ) ) = ( ( x /L N ) x. ( N /L x ) ) ) | 
						
							| 43 |  | oveq1 |  |-  ( m = x -> ( m - 1 ) = ( x - 1 ) ) | 
						
							| 44 | 43 | oveq1d |  |-  ( m = x -> ( ( m - 1 ) / 2 ) = ( ( x - 1 ) / 2 ) ) | 
						
							| 45 | 44 | oveq1d |  |-  ( m = x -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( m = x -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 47 | 42 46 | eqeq12d |  |-  ( m = x -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 48 | 39 47 | imbi12d |  |-  ( m = x -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 49 | 48 | imbi2d |  |-  ( m = x -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 50 |  | oveq1 |  |-  ( m = y -> ( m gcd ( 2 x. N ) ) = ( y gcd ( 2 x. N ) ) ) | 
						
							| 51 | 50 | eqeq1d |  |-  ( m = y -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( y gcd ( 2 x. N ) ) = 1 ) ) | 
						
							| 52 |  | oveq1 |  |-  ( m = y -> ( m /L N ) = ( y /L N ) ) | 
						
							| 53 |  | oveq2 |  |-  ( m = y -> ( N /L m ) = ( N /L y ) ) | 
						
							| 54 | 52 53 | oveq12d |  |-  ( m = y -> ( ( m /L N ) x. ( N /L m ) ) = ( ( y /L N ) x. ( N /L y ) ) ) | 
						
							| 55 |  | oveq1 |  |-  ( m = y -> ( m - 1 ) = ( y - 1 ) ) | 
						
							| 56 | 55 | oveq1d |  |-  ( m = y -> ( ( m - 1 ) / 2 ) = ( ( y - 1 ) / 2 ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( m = y -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( m = y -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 59 | 54 58 | eqeq12d |  |-  ( m = y -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 60 | 51 59 | imbi12d |  |-  ( m = y -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 61 | 60 | imbi2d |  |-  ( m = y -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 62 |  | oveq1 |  |-  ( m = ( x x. y ) -> ( m gcd ( 2 x. N ) ) = ( ( x x. y ) gcd ( 2 x. N ) ) ) | 
						
							| 63 | 62 | eqeq1d |  |-  ( m = ( x x. y ) -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) ) | 
						
							| 64 |  | oveq1 |  |-  ( m = ( x x. y ) -> ( m /L N ) = ( ( x x. y ) /L N ) ) | 
						
							| 65 |  | oveq2 |  |-  ( m = ( x x. y ) -> ( N /L m ) = ( N /L ( x x. y ) ) ) | 
						
							| 66 | 64 65 | oveq12d |  |-  ( m = ( x x. y ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) ) | 
						
							| 67 |  | oveq1 |  |-  ( m = ( x x. y ) -> ( m - 1 ) = ( ( x x. y ) - 1 ) ) | 
						
							| 68 | 67 | oveq1d |  |-  ( m = ( x x. y ) -> ( ( m - 1 ) / 2 ) = ( ( ( x x. y ) - 1 ) / 2 ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( m = ( x x. y ) -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( m = ( x x. y ) -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 71 | 66 70 | eqeq12d |  |-  ( m = ( x x. y ) -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 72 | 63 71 | imbi12d |  |-  ( m = ( x x. y ) -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 73 | 72 | imbi2d |  |-  ( m = ( x x. y ) -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 74 |  | oveq1 |  |-  ( m = M -> ( m gcd ( 2 x. N ) ) = ( M gcd ( 2 x. N ) ) ) | 
						
							| 75 | 74 | eqeq1d |  |-  ( m = M -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( M gcd ( 2 x. N ) ) = 1 ) ) | 
						
							| 76 |  | oveq1 |  |-  ( m = M -> ( m /L N ) = ( M /L N ) ) | 
						
							| 77 |  | oveq2 |  |-  ( m = M -> ( N /L m ) = ( N /L M ) ) | 
						
							| 78 | 76 77 | oveq12d |  |-  ( m = M -> ( ( m /L N ) x. ( N /L m ) ) = ( ( M /L N ) x. ( N /L M ) ) ) | 
						
							| 79 |  | oveq1 |  |-  ( m = M -> ( m - 1 ) = ( M - 1 ) ) | 
						
							| 80 | 79 | oveq1d |  |-  ( m = M -> ( ( m - 1 ) / 2 ) = ( ( M - 1 ) / 2 ) ) | 
						
							| 81 | 80 | oveq1d |  |-  ( m = M -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( m = M -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 83 | 78 82 | eqeq12d |  |-  ( m = M -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 84 | 75 83 | imbi12d |  |-  ( m = M -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 85 | 84 | imbi2d |  |-  ( m = M -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 86 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 87 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 88 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 89 | 87 88 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 90 | 86 89 | eqtr4i |  |-  ( 1 x. 1 ) = ( -u 1 ^ 0 ) | 
						
							| 91 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 92 | 91 | oveq1i |  |-  ( ( 1 ^ 2 ) /L N ) = ( 1 /L N ) | 
						
							| 93 |  | 1z |  |-  1 e. ZZ | 
						
							| 94 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 95 | 93 94 | pm3.2i |  |-  ( 1 e. ZZ /\ 1 =/= 0 ) | 
						
							| 96 | 3 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 97 |  | 1gcd |  |-  ( N e. ZZ -> ( 1 gcd N ) = 1 ) | 
						
							| 98 | 96 97 | syl |  |-  ( ph -> ( 1 gcd N ) = 1 ) | 
						
							| 99 |  | lgssq |  |-  ( ( ( 1 e. ZZ /\ 1 =/= 0 ) /\ N e. ZZ /\ ( 1 gcd N ) = 1 ) -> ( ( 1 ^ 2 ) /L N ) = 1 ) | 
						
							| 100 | 95 96 98 99 | mp3an2i |  |-  ( ph -> ( ( 1 ^ 2 ) /L N ) = 1 ) | 
						
							| 101 | 92 100 | eqtr3id |  |-  ( ph -> ( 1 /L N ) = 1 ) | 
						
							| 102 | 91 | oveq2i |  |-  ( N /L ( 1 ^ 2 ) ) = ( N /L 1 ) | 
						
							| 103 |  | 1nn |  |-  1 e. NN | 
						
							| 104 | 103 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 105 |  | gcd1 |  |-  ( N e. ZZ -> ( N gcd 1 ) = 1 ) | 
						
							| 106 | 96 105 | syl |  |-  ( ph -> ( N gcd 1 ) = 1 ) | 
						
							| 107 |  | lgssq2 |  |-  ( ( N e. ZZ /\ 1 e. NN /\ ( N gcd 1 ) = 1 ) -> ( N /L ( 1 ^ 2 ) ) = 1 ) | 
						
							| 108 | 96 104 106 107 | syl3anc |  |-  ( ph -> ( N /L ( 1 ^ 2 ) ) = 1 ) | 
						
							| 109 | 102 108 | eqtr3id |  |-  ( ph -> ( N /L 1 ) = 1 ) | 
						
							| 110 | 101 109 | oveq12d |  |-  ( ph -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( 1 x. 1 ) ) | 
						
							| 111 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 112 | 3 111 | syl |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 113 | 112 | nn0cnd |  |-  ( ph -> ( N - 1 ) e. CC ) | 
						
							| 114 | 113 | halfcld |  |-  ( ph -> ( ( N - 1 ) / 2 ) e. CC ) | 
						
							| 115 | 114 | mul02d |  |-  ( ph -> ( 0 x. ( ( N - 1 ) / 2 ) ) = 0 ) | 
						
							| 116 | 115 | oveq2d |  |-  ( ph -> ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ 0 ) ) | 
						
							| 117 | 90 110 116 | 3eqtr4a |  |-  ( ph -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 118 | 117 | a1d |  |-  ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 119 |  | simprl |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. Prime ) | 
						
							| 120 |  | prmz |  |-  ( m e. Prime -> m e. ZZ ) | 
						
							| 121 | 120 | ad2antrl |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. ZZ ) | 
						
							| 122 | 11 | a1i |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 e. ZZ ) | 
						
							| 123 | 3 | adantr |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> N e. NN ) | 
						
							| 124 | 123 | nnzd |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> N e. ZZ ) | 
						
							| 125 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) | 
						
							| 126 | 11 124 125 | sylancr |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( 2 x. N ) e. ZZ ) | 
						
							| 127 |  | simprr |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd ( 2 x. N ) ) = 1 ) | 
						
							| 128 |  | dvdsmul1 |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> 2 || ( 2 x. N ) ) | 
						
							| 129 | 11 124 128 | sylancr |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 || ( 2 x. N ) ) | 
						
							| 130 |  | rpdvds |  |-  ( ( ( m e. ZZ /\ 2 e. ZZ /\ ( 2 x. N ) e. ZZ ) /\ ( ( m gcd ( 2 x. N ) ) = 1 /\ 2 || ( 2 x. N ) ) ) -> ( m gcd 2 ) = 1 ) | 
						
							| 131 | 121 122 126 127 129 130 | syl32anc |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd 2 ) = 1 ) | 
						
							| 132 |  | prmrp |  |-  ( ( m e. Prime /\ 2 e. Prime ) -> ( ( m gcd 2 ) = 1 <-> m =/= 2 ) ) | 
						
							| 133 | 119 14 132 | sylancl |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( ( m gcd 2 ) = 1 <-> m =/= 2 ) ) | 
						
							| 134 | 131 133 | mpbid |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m =/= 2 ) | 
						
							| 135 |  | eldifsn |  |-  ( m e. ( Prime \ { 2 } ) <-> ( m e. Prime /\ m =/= 2 ) ) | 
						
							| 136 | 119 134 135 | sylanbrc |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. ( Prime \ { 2 } ) ) | 
						
							| 137 |  | prmnn |  |-  ( m e. Prime -> m e. NN ) | 
						
							| 138 | 137 | ad2antrl |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. NN ) | 
						
							| 139 | 8 | a1i |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 e. NN ) | 
						
							| 140 |  | rpmulgcd |  |-  ( ( ( m e. NN /\ 2 e. NN /\ N e. NN ) /\ ( m gcd 2 ) = 1 ) -> ( m gcd ( 2 x. N ) ) = ( m gcd N ) ) | 
						
							| 141 | 138 139 123 131 140 | syl31anc |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd ( 2 x. N ) ) = ( m gcd N ) ) | 
						
							| 142 | 141 127 | eqtr3d |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd N ) = 1 ) | 
						
							| 143 | 136 142 | jca |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) | 
						
							| 144 | 143 6 | syldan |  |-  ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 145 | 144 | exp32 |  |-  ( ph -> ( m e. Prime -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 146 | 145 | com12 |  |-  ( m e. Prime -> ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 147 |  | jcab |  |-  ( ( ph -> ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) <-> ( ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) /\ ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 148 |  | simplrl |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> x e. ( ZZ>= ` 2 ) ) | 
						
							| 149 |  | eluz2nn |  |-  ( x e. ( ZZ>= ` 2 ) -> x e. NN ) | 
						
							| 150 | 148 149 | syl |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> x e. NN ) | 
						
							| 151 |  | simplrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> y e. ( ZZ>= ` 2 ) ) | 
						
							| 152 |  | eluz2nn |  |-  ( y e. ( ZZ>= ` 2 ) -> y e. NN ) | 
						
							| 153 | 151 152 | syl |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> y e. NN ) | 
						
							| 154 | 150 153 | nnmulcld |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x x. y ) e. NN ) | 
						
							| 155 |  | n2dvds1 |  |-  -. 2 || 1 | 
						
							| 156 | 96 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> N e. ZZ ) | 
						
							| 157 | 11 156 128 | sylancr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> 2 || ( 2 x. N ) ) | 
						
							| 158 |  | eluzelz |  |-  ( x e. ( ZZ>= ` 2 ) -> x e. ZZ ) | 
						
							| 159 |  | eluzelz |  |-  ( y e. ( ZZ>= ` 2 ) -> y e. ZZ ) | 
						
							| 160 | 158 159 | anim12i |  |-  ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( x e. ZZ /\ y e. ZZ ) ) | 
						
							| 161 | 160 | ad2antlr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x e. ZZ /\ y e. ZZ ) ) | 
						
							| 162 |  | zmulcl |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) | 
						
							| 163 | 161 162 | syl |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x x. y ) e. ZZ ) | 
						
							| 164 | 11 156 125 | sylancr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 x. N ) e. ZZ ) | 
						
							| 165 |  | dvdsgcd |  |-  ( ( 2 e. ZZ /\ ( x x. y ) e. ZZ /\ ( 2 x. N ) e. ZZ ) -> ( ( 2 || ( x x. y ) /\ 2 || ( 2 x. N ) ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) | 
						
							| 166 | 11 163 164 165 | mp3an2i |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 || ( x x. y ) /\ 2 || ( 2 x. N ) ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) | 
						
							| 167 | 157 166 | mpan2d |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( x x. y ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) | 
						
							| 168 |  | simpr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) | 
						
							| 169 | 168 | breq2d |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( ( x x. y ) gcd ( 2 x. N ) ) <-> 2 || 1 ) ) | 
						
							| 170 | 167 169 | sylibd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( x x. y ) -> 2 || 1 ) ) | 
						
							| 171 | 155 170 | mtoi |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> -. 2 || ( x x. y ) ) | 
						
							| 172 | 171 | adantrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> -. 2 || ( x x. y ) ) | 
						
							| 173 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> N e. NN ) | 
						
							| 174 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> -. 2 || N ) | 
						
							| 175 |  | dvdsmul2 |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> N || ( 2 x. N ) ) | 
						
							| 176 | 11 156 175 | sylancr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> N || ( 2 x. N ) ) | 
						
							| 177 |  | rpdvds |  |-  ( ( ( ( x x. y ) e. ZZ /\ N e. ZZ /\ ( 2 x. N ) e. ZZ ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ N || ( 2 x. N ) ) ) -> ( ( x x. y ) gcd N ) = 1 ) | 
						
							| 178 | 163 156 164 168 176 177 | syl32anc |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( x x. y ) gcd N ) = 1 ) | 
						
							| 179 | 178 | adantrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x x. y ) gcd N ) = 1 ) | 
						
							| 180 |  | eqidd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x x. y ) = ( x x. y ) ) | 
						
							| 181 | 161 | simpld |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> x e. ZZ ) | 
						
							| 182 | 181 164 | gcdcomd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x gcd ( 2 x. N ) ) = ( ( 2 x. N ) gcd x ) ) | 
						
							| 183 | 164 163 | gcdcomd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd ( x x. y ) ) = ( ( x x. y ) gcd ( 2 x. N ) ) ) | 
						
							| 184 | 183 168 | eqtrd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd ( x x. y ) ) = 1 ) | 
						
							| 185 |  | dvdsmul1 |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> x || ( x x. y ) ) | 
						
							| 186 | 161 185 | syl |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> x || ( x x. y ) ) | 
						
							| 187 |  | rpdvds |  |-  ( ( ( ( 2 x. N ) e. ZZ /\ x e. ZZ /\ ( x x. y ) e. ZZ ) /\ ( ( ( 2 x. N ) gcd ( x x. y ) ) = 1 /\ x || ( x x. y ) ) ) -> ( ( 2 x. N ) gcd x ) = 1 ) | 
						
							| 188 | 164 181 163 184 186 187 | syl32anc |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd x ) = 1 ) | 
						
							| 189 | 182 188 | eqtrd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x gcd ( 2 x. N ) ) = 1 ) | 
						
							| 190 | 189 | adantrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x gcd ( 2 x. N ) ) = 1 ) | 
						
							| 191 |  | simprrl |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 192 | 190 191 | mpd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 193 | 161 | simprd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> y e. ZZ ) | 
						
							| 194 | 193 164 | gcdcomd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( y gcd ( 2 x. N ) ) = ( ( 2 x. N ) gcd y ) ) | 
						
							| 195 |  | dvdsmul2 |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> y || ( x x. y ) ) | 
						
							| 196 | 161 195 | syl |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> y || ( x x. y ) ) | 
						
							| 197 |  | rpdvds |  |-  ( ( ( ( 2 x. N ) e. ZZ /\ y e. ZZ /\ ( x x. y ) e. ZZ ) /\ ( ( ( 2 x. N ) gcd ( x x. y ) ) = 1 /\ y || ( x x. y ) ) ) -> ( ( 2 x. N ) gcd y ) = 1 ) | 
						
							| 198 | 164 193 163 184 196 197 | syl32anc |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd y ) = 1 ) | 
						
							| 199 | 194 198 | eqtrd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( y gcd ( 2 x. N ) ) = 1 ) | 
						
							| 200 | 199 | adantrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( y gcd ( 2 x. N ) ) = 1 ) | 
						
							| 201 |  | simprrr |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 202 | 200 201 | mpd |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 203 | 154 172 173 174 179 150 153 180 192 202 | lgsquad2lem1 |  |-  ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 204 | 203 | exp32 |  |-  ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 205 | 204 | com23 |  |-  ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 206 | 205 | expcom |  |-  ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ph -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 207 | 206 | a2d |  |-  ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ( ph -> ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) -> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 208 | 147 207 | biimtrrid |  |-  ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ( ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) /\ ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) -> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) | 
						
							| 209 | 37 49 61 73 85 118 146 208 | prmind |  |-  ( M e. NN -> ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) | 
						
							| 210 | 1 209 | mpcom |  |-  ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 211 | 21 210 | mpd |  |-  ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |