Step |
Hyp |
Ref |
Expression |
1 |
|
lgsquad2.1 |
|- ( ph -> M e. NN ) |
2 |
|
lgsquad2.2 |
|- ( ph -> -. 2 || M ) |
3 |
|
lgsquad2.3 |
|- ( ph -> N e. NN ) |
4 |
|
lgsquad2.4 |
|- ( ph -> -. 2 || N ) |
5 |
|
lgsquad2.5 |
|- ( ph -> ( M gcd N ) = 1 ) |
6 |
|
lgsquad2lem2.f |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
7 |
|
lgsquad2lem2.s |
|- ( ps <-> A. x e. ( 1 ... k ) ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
8 |
|
2nn |
|- 2 e. NN |
9 |
8
|
a1i |
|- ( ph -> 2 e. NN ) |
10 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
11 |
|
2z |
|- 2 e. ZZ |
12 |
|
gcdcom |
|- ( ( M e. ZZ /\ 2 e. ZZ ) -> ( M gcd 2 ) = ( 2 gcd M ) ) |
13 |
10 11 12
|
sylancl |
|- ( ph -> ( M gcd 2 ) = ( 2 gcd M ) ) |
14 |
|
2prm |
|- 2 e. Prime |
15 |
|
coprm |
|- ( ( 2 e. Prime /\ M e. ZZ ) -> ( -. 2 || M <-> ( 2 gcd M ) = 1 ) ) |
16 |
14 10 15
|
sylancr |
|- ( ph -> ( -. 2 || M <-> ( 2 gcd M ) = 1 ) ) |
17 |
2 16
|
mpbid |
|- ( ph -> ( 2 gcd M ) = 1 ) |
18 |
13 17
|
eqtrd |
|- ( ph -> ( M gcd 2 ) = 1 ) |
19 |
|
rpmulgcd |
|- ( ( ( M e. NN /\ 2 e. NN /\ N e. NN ) /\ ( M gcd 2 ) = 1 ) -> ( M gcd ( 2 x. N ) ) = ( M gcd N ) ) |
20 |
1 9 3 18 19
|
syl31anc |
|- ( ph -> ( M gcd ( 2 x. N ) ) = ( M gcd N ) ) |
21 |
20 5
|
eqtrd |
|- ( ph -> ( M gcd ( 2 x. N ) ) = 1 ) |
22 |
|
oveq1 |
|- ( m = 1 -> ( m /L N ) = ( 1 /L N ) ) |
23 |
|
oveq2 |
|- ( m = 1 -> ( N /L m ) = ( N /L 1 ) ) |
24 |
22 23
|
oveq12d |
|- ( m = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( ( 1 /L N ) x. ( N /L 1 ) ) ) |
25 |
|
oveq1 |
|- ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) |
26 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
27 |
25 26
|
eqtrdi |
|- ( m = 1 -> ( m - 1 ) = 0 ) |
28 |
27
|
oveq1d |
|- ( m = 1 -> ( ( m - 1 ) / 2 ) = ( 0 / 2 ) ) |
29 |
|
2cn |
|- 2 e. CC |
30 |
|
2ne0 |
|- 2 =/= 0 |
31 |
29 30
|
div0i |
|- ( 0 / 2 ) = 0 |
32 |
28 31
|
eqtrdi |
|- ( m = 1 -> ( ( m - 1 ) / 2 ) = 0 ) |
33 |
32
|
oveq1d |
|- ( m = 1 -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( 0 x. ( ( N - 1 ) / 2 ) ) ) |
34 |
33
|
oveq2d |
|- ( m = 1 -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) |
35 |
24 34
|
eqeq12d |
|- ( m = 1 -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) |
36 |
35
|
imbi2d |
|- ( m = 1 -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
37 |
36
|
imbi2d |
|- ( m = 1 -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
38 |
|
oveq1 |
|- ( m = x -> ( m gcd ( 2 x. N ) ) = ( x gcd ( 2 x. N ) ) ) |
39 |
38
|
eqeq1d |
|- ( m = x -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( x gcd ( 2 x. N ) ) = 1 ) ) |
40 |
|
oveq1 |
|- ( m = x -> ( m /L N ) = ( x /L N ) ) |
41 |
|
oveq2 |
|- ( m = x -> ( N /L m ) = ( N /L x ) ) |
42 |
40 41
|
oveq12d |
|- ( m = x -> ( ( m /L N ) x. ( N /L m ) ) = ( ( x /L N ) x. ( N /L x ) ) ) |
43 |
|
oveq1 |
|- ( m = x -> ( m - 1 ) = ( x - 1 ) ) |
44 |
43
|
oveq1d |
|- ( m = x -> ( ( m - 1 ) / 2 ) = ( ( x - 1 ) / 2 ) ) |
45 |
44
|
oveq1d |
|- ( m = x -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
46 |
45
|
oveq2d |
|- ( m = x -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
47 |
42 46
|
eqeq12d |
|- ( m = x -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
48 |
39 47
|
imbi12d |
|- ( m = x -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
49 |
48
|
imbi2d |
|- ( m = x -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
50 |
|
oveq1 |
|- ( m = y -> ( m gcd ( 2 x. N ) ) = ( y gcd ( 2 x. N ) ) ) |
51 |
50
|
eqeq1d |
|- ( m = y -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( y gcd ( 2 x. N ) ) = 1 ) ) |
52 |
|
oveq1 |
|- ( m = y -> ( m /L N ) = ( y /L N ) ) |
53 |
|
oveq2 |
|- ( m = y -> ( N /L m ) = ( N /L y ) ) |
54 |
52 53
|
oveq12d |
|- ( m = y -> ( ( m /L N ) x. ( N /L m ) ) = ( ( y /L N ) x. ( N /L y ) ) ) |
55 |
|
oveq1 |
|- ( m = y -> ( m - 1 ) = ( y - 1 ) ) |
56 |
55
|
oveq1d |
|- ( m = y -> ( ( m - 1 ) / 2 ) = ( ( y - 1 ) / 2 ) ) |
57 |
56
|
oveq1d |
|- ( m = y -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
58 |
57
|
oveq2d |
|- ( m = y -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
59 |
54 58
|
eqeq12d |
|- ( m = y -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
60 |
51 59
|
imbi12d |
|- ( m = y -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
61 |
60
|
imbi2d |
|- ( m = y -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
62 |
|
oveq1 |
|- ( m = ( x x. y ) -> ( m gcd ( 2 x. N ) ) = ( ( x x. y ) gcd ( 2 x. N ) ) ) |
63 |
62
|
eqeq1d |
|- ( m = ( x x. y ) -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) ) |
64 |
|
oveq1 |
|- ( m = ( x x. y ) -> ( m /L N ) = ( ( x x. y ) /L N ) ) |
65 |
|
oveq2 |
|- ( m = ( x x. y ) -> ( N /L m ) = ( N /L ( x x. y ) ) ) |
66 |
64 65
|
oveq12d |
|- ( m = ( x x. y ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) ) |
67 |
|
oveq1 |
|- ( m = ( x x. y ) -> ( m - 1 ) = ( ( x x. y ) - 1 ) ) |
68 |
67
|
oveq1d |
|- ( m = ( x x. y ) -> ( ( m - 1 ) / 2 ) = ( ( ( x x. y ) - 1 ) / 2 ) ) |
69 |
68
|
oveq1d |
|- ( m = ( x x. y ) -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
70 |
69
|
oveq2d |
|- ( m = ( x x. y ) -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
71 |
66 70
|
eqeq12d |
|- ( m = ( x x. y ) -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
72 |
63 71
|
imbi12d |
|- ( m = ( x x. y ) -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
73 |
72
|
imbi2d |
|- ( m = ( x x. y ) -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
74 |
|
oveq1 |
|- ( m = M -> ( m gcd ( 2 x. N ) ) = ( M gcd ( 2 x. N ) ) ) |
75 |
74
|
eqeq1d |
|- ( m = M -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( M gcd ( 2 x. N ) ) = 1 ) ) |
76 |
|
oveq1 |
|- ( m = M -> ( m /L N ) = ( M /L N ) ) |
77 |
|
oveq2 |
|- ( m = M -> ( N /L m ) = ( N /L M ) ) |
78 |
76 77
|
oveq12d |
|- ( m = M -> ( ( m /L N ) x. ( N /L m ) ) = ( ( M /L N ) x. ( N /L M ) ) ) |
79 |
|
oveq1 |
|- ( m = M -> ( m - 1 ) = ( M - 1 ) ) |
80 |
79
|
oveq1d |
|- ( m = M -> ( ( m - 1 ) / 2 ) = ( ( M - 1 ) / 2 ) ) |
81 |
80
|
oveq1d |
|- ( m = M -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
82 |
81
|
oveq2d |
|- ( m = M -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
83 |
78 82
|
eqeq12d |
|- ( m = M -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
84 |
75 83
|
imbi12d |
|- ( m = M -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
85 |
84
|
imbi2d |
|- ( m = M -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
86 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
87 |
|
neg1cn |
|- -u 1 e. CC |
88 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
89 |
87 88
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
90 |
86 89
|
eqtr4i |
|- ( 1 x. 1 ) = ( -u 1 ^ 0 ) |
91 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
92 |
91
|
oveq1i |
|- ( ( 1 ^ 2 ) /L N ) = ( 1 /L N ) |
93 |
|
1z |
|- 1 e. ZZ |
94 |
|
ax-1ne0 |
|- 1 =/= 0 |
95 |
93 94
|
pm3.2i |
|- ( 1 e. ZZ /\ 1 =/= 0 ) |
96 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
97 |
|
1gcd |
|- ( N e. ZZ -> ( 1 gcd N ) = 1 ) |
98 |
96 97
|
syl |
|- ( ph -> ( 1 gcd N ) = 1 ) |
99 |
|
lgssq |
|- ( ( ( 1 e. ZZ /\ 1 =/= 0 ) /\ N e. ZZ /\ ( 1 gcd N ) = 1 ) -> ( ( 1 ^ 2 ) /L N ) = 1 ) |
100 |
95 96 98 99
|
mp3an2i |
|- ( ph -> ( ( 1 ^ 2 ) /L N ) = 1 ) |
101 |
92 100
|
eqtr3id |
|- ( ph -> ( 1 /L N ) = 1 ) |
102 |
91
|
oveq2i |
|- ( N /L ( 1 ^ 2 ) ) = ( N /L 1 ) |
103 |
|
1nn |
|- 1 e. NN |
104 |
103
|
a1i |
|- ( ph -> 1 e. NN ) |
105 |
|
gcd1 |
|- ( N e. ZZ -> ( N gcd 1 ) = 1 ) |
106 |
96 105
|
syl |
|- ( ph -> ( N gcd 1 ) = 1 ) |
107 |
|
lgssq2 |
|- ( ( N e. ZZ /\ 1 e. NN /\ ( N gcd 1 ) = 1 ) -> ( N /L ( 1 ^ 2 ) ) = 1 ) |
108 |
96 104 106 107
|
syl3anc |
|- ( ph -> ( N /L ( 1 ^ 2 ) ) = 1 ) |
109 |
102 108
|
eqtr3id |
|- ( ph -> ( N /L 1 ) = 1 ) |
110 |
101 109
|
oveq12d |
|- ( ph -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( 1 x. 1 ) ) |
111 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
112 |
3 111
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
113 |
112
|
nn0cnd |
|- ( ph -> ( N - 1 ) e. CC ) |
114 |
113
|
halfcld |
|- ( ph -> ( ( N - 1 ) / 2 ) e. CC ) |
115 |
114
|
mul02d |
|- ( ph -> ( 0 x. ( ( N - 1 ) / 2 ) ) = 0 ) |
116 |
115
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ 0 ) ) |
117 |
90 110 116
|
3eqtr4a |
|- ( ph -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) |
118 |
117
|
a1d |
|- ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) |
119 |
|
simprl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. Prime ) |
120 |
|
prmz |
|- ( m e. Prime -> m e. ZZ ) |
121 |
120
|
ad2antrl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. ZZ ) |
122 |
11
|
a1i |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 e. ZZ ) |
123 |
3
|
adantr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> N e. NN ) |
124 |
123
|
nnzd |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> N e. ZZ ) |
125 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
126 |
11 124 125
|
sylancr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( 2 x. N ) e. ZZ ) |
127 |
|
simprr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd ( 2 x. N ) ) = 1 ) |
128 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> 2 || ( 2 x. N ) ) |
129 |
11 124 128
|
sylancr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 || ( 2 x. N ) ) |
130 |
|
rpdvds |
|- ( ( ( m e. ZZ /\ 2 e. ZZ /\ ( 2 x. N ) e. ZZ ) /\ ( ( m gcd ( 2 x. N ) ) = 1 /\ 2 || ( 2 x. N ) ) ) -> ( m gcd 2 ) = 1 ) |
131 |
121 122 126 127 129 130
|
syl32anc |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd 2 ) = 1 ) |
132 |
|
prmrp |
|- ( ( m e. Prime /\ 2 e. Prime ) -> ( ( m gcd 2 ) = 1 <-> m =/= 2 ) ) |
133 |
119 14 132
|
sylancl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( ( m gcd 2 ) = 1 <-> m =/= 2 ) ) |
134 |
131 133
|
mpbid |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m =/= 2 ) |
135 |
|
eldifsn |
|- ( m e. ( Prime \ { 2 } ) <-> ( m e. Prime /\ m =/= 2 ) ) |
136 |
119 134 135
|
sylanbrc |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. ( Prime \ { 2 } ) ) |
137 |
|
prmnn |
|- ( m e. Prime -> m e. NN ) |
138 |
137
|
ad2antrl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. NN ) |
139 |
8
|
a1i |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 e. NN ) |
140 |
|
rpmulgcd |
|- ( ( ( m e. NN /\ 2 e. NN /\ N e. NN ) /\ ( m gcd 2 ) = 1 ) -> ( m gcd ( 2 x. N ) ) = ( m gcd N ) ) |
141 |
138 139 123 131 140
|
syl31anc |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd ( 2 x. N ) ) = ( m gcd N ) ) |
142 |
141 127
|
eqtr3d |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd N ) = 1 ) |
143 |
136 142
|
jca |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) |
144 |
143 6
|
syldan |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
145 |
144
|
exp32 |
|- ( ph -> ( m e. Prime -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
146 |
145
|
com12 |
|- ( m e. Prime -> ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
147 |
|
jcab |
|- ( ( ph -> ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) <-> ( ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) /\ ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
148 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> x e. ( ZZ>= ` 2 ) ) |
149 |
|
eluz2nn |
|- ( x e. ( ZZ>= ` 2 ) -> x e. NN ) |
150 |
148 149
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> x e. NN ) |
151 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> y e. ( ZZ>= ` 2 ) ) |
152 |
|
eluz2nn |
|- ( y e. ( ZZ>= ` 2 ) -> y e. NN ) |
153 |
151 152
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> y e. NN ) |
154 |
150 153
|
nnmulcld |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x x. y ) e. NN ) |
155 |
|
n2dvds1 |
|- -. 2 || 1 |
156 |
96
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> N e. ZZ ) |
157 |
11 156 128
|
sylancr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> 2 || ( 2 x. N ) ) |
158 |
|
eluzelz |
|- ( x e. ( ZZ>= ` 2 ) -> x e. ZZ ) |
159 |
|
eluzelz |
|- ( y e. ( ZZ>= ` 2 ) -> y e. ZZ ) |
160 |
158 159
|
anim12i |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( x e. ZZ /\ y e. ZZ ) ) |
161 |
160
|
ad2antlr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x e. ZZ /\ y e. ZZ ) ) |
162 |
|
zmulcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
163 |
161 162
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x x. y ) e. ZZ ) |
164 |
11 156 125
|
sylancr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 x. N ) e. ZZ ) |
165 |
|
dvdsgcd |
|- ( ( 2 e. ZZ /\ ( x x. y ) e. ZZ /\ ( 2 x. N ) e. ZZ ) -> ( ( 2 || ( x x. y ) /\ 2 || ( 2 x. N ) ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) |
166 |
11 163 164 165
|
mp3an2i |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 || ( x x. y ) /\ 2 || ( 2 x. N ) ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) |
167 |
157 166
|
mpan2d |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( x x. y ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) |
168 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) |
169 |
168
|
breq2d |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( ( x x. y ) gcd ( 2 x. N ) ) <-> 2 || 1 ) ) |
170 |
167 169
|
sylibd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( x x. y ) -> 2 || 1 ) ) |
171 |
155 170
|
mtoi |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> -. 2 || ( x x. y ) ) |
172 |
171
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> -. 2 || ( x x. y ) ) |
173 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> N e. NN ) |
174 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> -. 2 || N ) |
175 |
|
dvdsmul2 |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> N || ( 2 x. N ) ) |
176 |
11 156 175
|
sylancr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> N || ( 2 x. N ) ) |
177 |
|
rpdvds |
|- ( ( ( ( x x. y ) e. ZZ /\ N e. ZZ /\ ( 2 x. N ) e. ZZ ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ N || ( 2 x. N ) ) ) -> ( ( x x. y ) gcd N ) = 1 ) |
178 |
163 156 164 168 176 177
|
syl32anc |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( x x. y ) gcd N ) = 1 ) |
179 |
178
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x x. y ) gcd N ) = 1 ) |
180 |
|
eqidd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x x. y ) = ( x x. y ) ) |
181 |
161
|
simpld |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> x e. ZZ ) |
182 |
181 164
|
gcdcomd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x gcd ( 2 x. N ) ) = ( ( 2 x. N ) gcd x ) ) |
183 |
164 163
|
gcdcomd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd ( x x. y ) ) = ( ( x x. y ) gcd ( 2 x. N ) ) ) |
184 |
183 168
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd ( x x. y ) ) = 1 ) |
185 |
|
dvdsmul1 |
|- ( ( x e. ZZ /\ y e. ZZ ) -> x || ( x x. y ) ) |
186 |
161 185
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> x || ( x x. y ) ) |
187 |
|
rpdvds |
|- ( ( ( ( 2 x. N ) e. ZZ /\ x e. ZZ /\ ( x x. y ) e. ZZ ) /\ ( ( ( 2 x. N ) gcd ( x x. y ) ) = 1 /\ x || ( x x. y ) ) ) -> ( ( 2 x. N ) gcd x ) = 1 ) |
188 |
164 181 163 184 186 187
|
syl32anc |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd x ) = 1 ) |
189 |
182 188
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x gcd ( 2 x. N ) ) = 1 ) |
190 |
189
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x gcd ( 2 x. N ) ) = 1 ) |
191 |
|
simprrl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
192 |
190 191
|
mpd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
193 |
161
|
simprd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> y e. ZZ ) |
194 |
193 164
|
gcdcomd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( y gcd ( 2 x. N ) ) = ( ( 2 x. N ) gcd y ) ) |
195 |
|
dvdsmul2 |
|- ( ( x e. ZZ /\ y e. ZZ ) -> y || ( x x. y ) ) |
196 |
161 195
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> y || ( x x. y ) ) |
197 |
|
rpdvds |
|- ( ( ( ( 2 x. N ) e. ZZ /\ y e. ZZ /\ ( x x. y ) e. ZZ ) /\ ( ( ( 2 x. N ) gcd ( x x. y ) ) = 1 /\ y || ( x x. y ) ) ) -> ( ( 2 x. N ) gcd y ) = 1 ) |
198 |
164 193 163 184 196 197
|
syl32anc |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd y ) = 1 ) |
199 |
194 198
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( y gcd ( 2 x. N ) ) = 1 ) |
200 |
199
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( y gcd ( 2 x. N ) ) = 1 ) |
201 |
|
simprrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
202 |
200 201
|
mpd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
203 |
154 172 173 174 179 150 153 180 192 202
|
lgsquad2lem1 |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
204 |
203
|
exp32 |
|- ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
205 |
204
|
com23 |
|- ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
206 |
205
|
expcom |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ph -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
207 |
206
|
a2d |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ( ph -> ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) -> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
208 |
147 207
|
syl5bir |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ( ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) /\ ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) -> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
209 |
37 49 61 73 85 118 146 208
|
prmind |
|- ( M e. NN -> ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
210 |
1 209
|
mpcom |
|- ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
211 |
21 210
|
mpd |
|- ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |