Step |
Hyp |
Ref |
Expression |
1 |
|
simplrl |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> N e. NN ) |
2 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
3 |
1 2
|
syl |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> N e. ZZ ) |
4 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
5 |
4
|
ad3antrrr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> M e. ZZ ) |
6 |
|
lgscl |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N /L M ) e. ZZ ) |
7 |
3 5 6
|
syl2anc |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N /L M ) e. ZZ ) |
8 |
7
|
zred |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N /L M ) e. RR ) |
9 |
|
absresq |
|- ( ( N /L M ) e. RR -> ( ( abs ` ( N /L M ) ) ^ 2 ) = ( ( N /L M ) ^ 2 ) ) |
10 |
8 9
|
syl |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) ^ 2 ) = ( ( N /L M ) ^ 2 ) ) |
11 |
3 5
|
gcdcomd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = ( M gcd N ) ) |
12 |
|
simpr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 ) |
13 |
11 12
|
eqtrd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = 1 ) |
14 |
|
lgsabs1 |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` ( N /L M ) ) = 1 <-> ( N gcd M ) = 1 ) ) |
15 |
3 5 14
|
syl2anc |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) = 1 <-> ( N gcd M ) = 1 ) ) |
16 |
13 15
|
mpbird |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( abs ` ( N /L M ) ) = 1 ) |
17 |
16
|
oveq1d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
18 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
19 |
17 18
|
eqtrdi |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) ^ 2 ) = 1 ) |
20 |
7
|
zcnd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N /L M ) e. CC ) |
21 |
20
|
sqvald |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( N /L M ) ^ 2 ) = ( ( N /L M ) x. ( N /L M ) ) ) |
22 |
10 19 21
|
3eqtr3d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> 1 = ( ( N /L M ) x. ( N /L M ) ) ) |
23 |
22
|
oveq2d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. 1 ) = ( ( M /L N ) x. ( ( N /L M ) x. ( N /L M ) ) ) ) |
24 |
|
lgscl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M /L N ) e. ZZ ) |
25 |
5 3 24
|
syl2anc |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M /L N ) e. ZZ ) |
26 |
25
|
zcnd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M /L N ) e. CC ) |
27 |
26 20 20
|
mulassd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( ( M /L N ) x. ( N /L M ) ) x. ( N /L M ) ) = ( ( M /L N ) x. ( ( N /L M ) x. ( N /L M ) ) ) ) |
28 |
23 27
|
eqtr4d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. 1 ) = ( ( ( M /L N ) x. ( N /L M ) ) x. ( N /L M ) ) ) |
29 |
26
|
mulid1d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. 1 ) = ( M /L N ) ) |
30 |
|
simplll |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> M e. NN ) |
31 |
|
simpllr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> -. 2 || M ) |
32 |
|
simplrr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> -. 2 || N ) |
33 |
30 31 1 32 12
|
lgsquad2 |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
34 |
33
|
oveq1d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( ( M /L N ) x. ( N /L M ) ) x. ( N /L M ) ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) |
35 |
28 29 34
|
3eqtr3d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M /L N ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) |
36 |
|
neg1cn |
|- -u 1 e. CC |
37 |
36
|
a1i |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -u 1 e. CC ) |
38 |
|
neg1ne0 |
|- -u 1 =/= 0 |
39 |
38
|
a1i |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -u 1 =/= 0 ) |
40 |
4
|
ad3antrrr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> M e. ZZ ) |
41 |
|
simpllr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -. 2 || M ) |
42 |
|
1zzd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> 1 e. ZZ ) |
43 |
|
2prm |
|- 2 e. Prime |
44 |
|
nprmdvds1 |
|- ( 2 e. Prime -> -. 2 || 1 ) |
45 |
43 44
|
mp1i |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -. 2 || 1 ) |
46 |
|
omoe |
|- ( ( ( M e. ZZ /\ -. 2 || M ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( M - 1 ) ) |
47 |
40 41 42 45 46
|
syl22anc |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> 2 || ( M - 1 ) ) |
48 |
|
2z |
|- 2 e. ZZ |
49 |
|
2ne0 |
|- 2 =/= 0 |
50 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
51 |
40 50
|
syl |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( M - 1 ) e. ZZ ) |
52 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( M - 1 ) e. ZZ ) -> ( 2 || ( M - 1 ) <-> ( ( M - 1 ) / 2 ) e. ZZ ) ) |
53 |
48 49 51 52
|
mp3an12i |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( 2 || ( M - 1 ) <-> ( ( M - 1 ) / 2 ) e. ZZ ) ) |
54 |
47 53
|
mpbid |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( M - 1 ) / 2 ) e. ZZ ) |
55 |
2
|
adantr |
|- ( ( N e. NN /\ -. 2 || N ) -> N e. ZZ ) |
56 |
55
|
ad2antlr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> N e. ZZ ) |
57 |
|
simplrr |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -. 2 || N ) |
58 |
|
omoe |
|- ( ( ( N e. ZZ /\ -. 2 || N ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( N - 1 ) ) |
59 |
56 57 42 45 58
|
syl22anc |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> 2 || ( N - 1 ) ) |
60 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
61 |
56 60
|
syl |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( N - 1 ) e. ZZ ) |
62 |
|
dvdsval2 |
|- ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
63 |
48 49 61 62
|
mp3an12i |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) |
64 |
59 63
|
mpbid |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( N - 1 ) / 2 ) e. ZZ ) |
65 |
54 64
|
zmulcld |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) |
66 |
37 39 65
|
expclzd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) e. CC ) |
67 |
66
|
mul01d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. 0 ) = 0 ) |
68 |
|
lgsne0 |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N /L M ) =/= 0 <-> ( N gcd M ) = 1 ) ) |
69 |
|
gcdcom |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) |
70 |
69
|
eqeq1d |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N gcd M ) = 1 <-> ( M gcd N ) = 1 ) ) |
71 |
68 70
|
bitrd |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N /L M ) =/= 0 <-> ( M gcd N ) = 1 ) ) |
72 |
2 4 71
|
syl2anr |
|- ( ( M e. NN /\ N e. NN ) -> ( ( N /L M ) =/= 0 <-> ( M gcd N ) = 1 ) ) |
73 |
72
|
necon1bbid |
|- ( ( M e. NN /\ N e. NN ) -> ( -. ( M gcd N ) = 1 <-> ( N /L M ) = 0 ) ) |
74 |
73
|
ad2ant2r |
|- ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) -> ( -. ( M gcd N ) = 1 <-> ( N /L M ) = 0 ) ) |
75 |
74
|
biimpa |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( N /L M ) = 0 ) |
76 |
75
|
oveq2d |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. 0 ) ) |
77 |
|
lgsne0 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M /L N ) =/= 0 <-> ( M gcd N ) = 1 ) ) |
78 |
77
|
necon1bbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M gcd N ) = 1 <-> ( M /L N ) = 0 ) ) |
79 |
4 2 78
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( -. ( M gcd N ) = 1 <-> ( M /L N ) = 0 ) ) |
80 |
79
|
ad2ant2r |
|- ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) -> ( -. ( M gcd N ) = 1 <-> ( M /L N ) = 0 ) ) |
81 |
80
|
biimpa |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( M /L N ) = 0 ) |
82 |
67 76 81
|
3eqtr4rd |
|- ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( M /L N ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) |
83 |
35 82
|
pm2.61dan |
|- ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) -> ( M /L N ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) |