| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplrl |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> N e. NN ) | 
						
							| 2 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> N e. ZZ ) | 
						
							| 4 |  | nnz |  |-  ( M e. NN -> M e. ZZ ) | 
						
							| 5 | 4 | ad3antrrr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> M e. ZZ ) | 
						
							| 6 |  | lgscl |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N /L M ) e. ZZ ) | 
						
							| 7 | 3 5 6 | syl2anc |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N /L M ) e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N /L M ) e. RR ) | 
						
							| 9 |  | absresq |  |-  ( ( N /L M ) e. RR -> ( ( abs ` ( N /L M ) ) ^ 2 ) = ( ( N /L M ) ^ 2 ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) ^ 2 ) = ( ( N /L M ) ^ 2 ) ) | 
						
							| 11 | 3 5 | gcdcomd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = ( M gcd N ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M gcd N ) = 1 ) | 
						
							| 13 | 11 12 | eqtrd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N gcd M ) = 1 ) | 
						
							| 14 |  | lgsabs1 |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` ( N /L M ) ) = 1 <-> ( N gcd M ) = 1 ) ) | 
						
							| 15 | 3 5 14 | syl2anc |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) = 1 <-> ( N gcd M ) = 1 ) ) | 
						
							| 16 | 13 15 | mpbird |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( abs ` ( N /L M ) ) = 1 ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 18 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 19 | 17 18 | eqtrdi |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( abs ` ( N /L M ) ) ^ 2 ) = 1 ) | 
						
							| 20 | 7 | zcnd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( N /L M ) e. CC ) | 
						
							| 21 | 20 | sqvald |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( N /L M ) ^ 2 ) = ( ( N /L M ) x. ( N /L M ) ) ) | 
						
							| 22 | 10 19 21 | 3eqtr3d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> 1 = ( ( N /L M ) x. ( N /L M ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. 1 ) = ( ( M /L N ) x. ( ( N /L M ) x. ( N /L M ) ) ) ) | 
						
							| 24 |  | lgscl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M /L N ) e. ZZ ) | 
						
							| 25 | 5 3 24 | syl2anc |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M /L N ) e. ZZ ) | 
						
							| 26 | 25 | zcnd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M /L N ) e. CC ) | 
						
							| 27 | 26 20 20 | mulassd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( ( M /L N ) x. ( N /L M ) ) x. ( N /L M ) ) = ( ( M /L N ) x. ( ( N /L M ) x. ( N /L M ) ) ) ) | 
						
							| 28 | 23 27 | eqtr4d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. 1 ) = ( ( ( M /L N ) x. ( N /L M ) ) x. ( N /L M ) ) ) | 
						
							| 29 | 26 | mulridd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. 1 ) = ( M /L N ) ) | 
						
							| 30 |  | simplll |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> M e. NN ) | 
						
							| 31 |  | simpllr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> -. 2 || M ) | 
						
							| 32 |  | simplrr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> -. 2 || N ) | 
						
							| 33 | 30 31 1 32 12 | lgsquad2 |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( ( ( M /L N ) x. ( N /L M ) ) x. ( N /L M ) ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) | 
						
							| 35 | 28 29 34 | 3eqtr3d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ ( M gcd N ) = 1 ) -> ( M /L N ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) | 
						
							| 36 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 37 | 36 | a1i |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -u 1 e. CC ) | 
						
							| 38 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 39 | 38 | a1i |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -u 1 =/= 0 ) | 
						
							| 40 | 4 | ad3antrrr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> M e. ZZ ) | 
						
							| 41 |  | simpllr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -. 2 || M ) | 
						
							| 42 |  | 1zzd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> 1 e. ZZ ) | 
						
							| 43 |  | 2prm |  |-  2 e. Prime | 
						
							| 44 |  | nprmdvds1 |  |-  ( 2 e. Prime -> -. 2 || 1 ) | 
						
							| 45 | 43 44 | mp1i |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -. 2 || 1 ) | 
						
							| 46 |  | omoe |  |-  ( ( ( M e. ZZ /\ -. 2 || M ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( M - 1 ) ) | 
						
							| 47 | 40 41 42 45 46 | syl22anc |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> 2 || ( M - 1 ) ) | 
						
							| 48 |  | 2z |  |-  2 e. ZZ | 
						
							| 49 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 50 |  | peano2zm |  |-  ( M e. ZZ -> ( M - 1 ) e. ZZ ) | 
						
							| 51 | 40 50 | syl |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( M - 1 ) e. ZZ ) | 
						
							| 52 |  | dvdsval2 |  |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( M - 1 ) e. ZZ ) -> ( 2 || ( M - 1 ) <-> ( ( M - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 53 | 48 49 51 52 | mp3an12i |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( 2 || ( M - 1 ) <-> ( ( M - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 54 | 47 53 | mpbid |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( M - 1 ) / 2 ) e. ZZ ) | 
						
							| 55 | 2 | adantr |  |-  ( ( N e. NN /\ -. 2 || N ) -> N e. ZZ ) | 
						
							| 56 | 55 | ad2antlr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> N e. ZZ ) | 
						
							| 57 |  | simplrr |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> -. 2 || N ) | 
						
							| 58 |  | omoe |  |-  ( ( ( N e. ZZ /\ -. 2 || N ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( N - 1 ) ) | 
						
							| 59 | 56 57 42 45 58 | syl22anc |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> 2 || ( N - 1 ) ) | 
						
							| 60 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 61 | 56 60 | syl |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( N - 1 ) e. ZZ ) | 
						
							| 62 |  | dvdsval2 |  |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 63 | 48 49 61 62 | mp3an12i |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 64 | 59 63 | mpbid |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 65 | 54 64 | zmulcld |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 66 | 37 39 65 | expclzd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) e. CC ) | 
						
							| 67 | 66 | mul01d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. 0 ) = 0 ) | 
						
							| 68 |  | lgsne0 |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N /L M ) =/= 0 <-> ( N gcd M ) = 1 ) ) | 
						
							| 69 |  | gcdcom |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) | 
						
							| 70 | 69 | eqeq1d |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N gcd M ) = 1 <-> ( M gcd N ) = 1 ) ) | 
						
							| 71 | 68 70 | bitrd |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N /L M ) =/= 0 <-> ( M gcd N ) = 1 ) ) | 
						
							| 72 | 2 4 71 | syl2anr |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( N /L M ) =/= 0 <-> ( M gcd N ) = 1 ) ) | 
						
							| 73 | 72 | necon1bbid |  |-  ( ( M e. NN /\ N e. NN ) -> ( -. ( M gcd N ) = 1 <-> ( N /L M ) = 0 ) ) | 
						
							| 74 | 73 | ad2ant2r |  |-  ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) -> ( -. ( M gcd N ) = 1 <-> ( N /L M ) = 0 ) ) | 
						
							| 75 | 74 | biimpa |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( N /L M ) = 0 ) | 
						
							| 76 | 75 | oveq2d |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. 0 ) ) | 
						
							| 77 |  | lgsne0 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M /L N ) =/= 0 <-> ( M gcd N ) = 1 ) ) | 
						
							| 78 | 77 | necon1bbid |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M gcd N ) = 1 <-> ( M /L N ) = 0 ) ) | 
						
							| 79 | 4 2 78 | syl2an |  |-  ( ( M e. NN /\ N e. NN ) -> ( -. ( M gcd N ) = 1 <-> ( M /L N ) = 0 ) ) | 
						
							| 80 | 79 | ad2ant2r |  |-  ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) -> ( -. ( M gcd N ) = 1 <-> ( M /L N ) = 0 ) ) | 
						
							| 81 | 80 | biimpa |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( M /L N ) = 0 ) | 
						
							| 82 | 67 76 81 | 3eqtr4rd |  |-  ( ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) /\ -. ( M gcd N ) = 1 ) -> ( M /L N ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) | 
						
							| 83 | 35 82 | pm2.61dan |  |-  ( ( ( M e. NN /\ -. 2 || M ) /\ ( N e. NN /\ -. 2 || N ) ) -> ( M /L N ) = ( ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( N /L M ) ) ) |