| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> A e. ZZ ) | 
						
							| 2 |  | simp2 |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> N e. ZZ ) | 
						
							| 3 |  | simp1r |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> A =/= 0 ) | 
						
							| 4 |  | lgsdir |  |-  ( ( ( A e. ZZ /\ A e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ A =/= 0 ) ) -> ( ( A x. A ) /L N ) = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 5 | 1 1 2 3 3 4 | syl32anc |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A x. A ) /L N ) = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 6 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. ZZ /\ A =/= 0 ) -> A e. CC ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> A e. CC ) | 
						
							| 9 | 8 | sqvald |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( A ^ 2 ) = ( A x. A ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A ^ 2 ) /L N ) = ( ( A x. A ) /L N ) ) | 
						
							| 11 |  | lgscl |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) | 
						
							| 12 | 1 2 11 | syl2anc |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( A /L N ) e. ZZ ) | 
						
							| 13 | 12 | zred |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( A /L N ) e. RR ) | 
						
							| 14 |  | absresq |  |-  ( ( A /L N ) e. RR -> ( ( abs ` ( A /L N ) ) ^ 2 ) = ( ( A /L N ) ^ 2 ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( abs ` ( A /L N ) ) ^ 2 ) = ( ( A /L N ) ^ 2 ) ) | 
						
							| 16 |  | lgsabs1 |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) = 1 <-> ( A gcd N ) = 1 ) ) | 
						
							| 17 | 16 | adantlr |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) = 1 <-> ( A gcd N ) = 1 ) ) | 
						
							| 18 | 17 | biimp3ar |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( abs ` ( A /L N ) ) = 1 ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( abs ` ( A /L N ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 20 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( abs ` ( A /L N ) ) ^ 2 ) = 1 ) | 
						
							| 22 | 12 | zcnd |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( A /L N ) e. CC ) | 
						
							| 23 | 22 | sqvald |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A /L N ) ^ 2 ) = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 24 | 15 21 23 | 3eqtr3d |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> 1 = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 25 | 5 10 24 | 3eqtr4d |  |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ N e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A ^ 2 ) /L N ) = 1 ) |