| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> A e. ZZ ) | 
						
							| 2 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 3 | 2 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> N e. ZZ ) | 
						
							| 4 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> N =/= 0 ) | 
						
							| 6 |  | lgsdi |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N e. ZZ ) /\ ( N =/= 0 /\ N =/= 0 ) ) -> ( A /L ( N x. N ) ) = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 7 | 1 3 3 5 5 6 | syl32anc |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( A /L ( N x. N ) ) = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 8 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> N e. CC ) | 
						
							| 10 | 9 | sqvald |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( N ^ 2 ) = ( N x. N ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( A /L ( N ^ 2 ) ) = ( A /L ( N x. N ) ) ) | 
						
							| 12 |  | lgscl |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) | 
						
							| 13 | 1 3 12 | syl2anc |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( A /L N ) e. ZZ ) | 
						
							| 14 | 13 | zred |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( A /L N ) e. RR ) | 
						
							| 15 |  | absresq |  |-  ( ( A /L N ) e. RR -> ( ( abs ` ( A /L N ) ) ^ 2 ) = ( ( A /L N ) ^ 2 ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( ( abs ` ( A /L N ) ) ^ 2 ) = ( ( A /L N ) ^ 2 ) ) | 
						
							| 17 |  | lgsabs1 |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( A /L N ) ) = 1 <-> ( A gcd N ) = 1 ) ) | 
						
							| 18 | 2 17 | sylan2 |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( ( abs ` ( A /L N ) ) = 1 <-> ( A gcd N ) = 1 ) ) | 
						
							| 19 | 18 | biimp3ar |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( abs ` ( A /L N ) ) = 1 ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( ( abs ` ( A /L N ) ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 21 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( ( abs ` ( A /L N ) ) ^ 2 ) = 1 ) | 
						
							| 23 | 13 | zcnd |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( A /L N ) e. CC ) | 
						
							| 24 | 23 | sqvald |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( ( A /L N ) ^ 2 ) = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 25 | 16 22 24 | 3eqtr3d |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> 1 = ( ( A /L N ) x. ( A /L N ) ) ) | 
						
							| 26 | 7 11 25 | 3eqtr4d |  |-  ( ( A e. ZZ /\ N e. NN /\ ( A gcd N ) = 1 ) -> ( A /L ( N ^ 2 ) ) = 1 ) |