Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
2 |
|
lgsval2 |
|- ( ( A e. ZZ /\ P e. Prime ) -> ( A /L P ) = if ( P = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) ) |
3 |
|
ifnefalse |
|- ( P =/= 2 -> if ( P = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |
4 |
2 3
|
sylan9eq |
|- ( ( ( A e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |
5 |
4
|
anasss |
|- ( ( A e. ZZ /\ ( P e. Prime /\ P =/= 2 ) ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |
6 |
1 5
|
sylan2b |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |