| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn |  |-  ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) | 
						
							| 2 |  | lgsval2 |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( A /L P ) = if ( P = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) ) | 
						
							| 3 |  | ifnefalse |  |-  ( P =/= 2 -> if ( P = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) | 
						
							| 4 | 2 3 | sylan9eq |  |-  ( ( ( A e. ZZ /\ P e. Prime ) /\ P =/= 2 ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) | 
						
							| 5 | 4 | anasss |  |-  ( ( A e. ZZ /\ ( P e. Prime /\ P =/= 2 ) ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) | 
						
							| 6 | 1 5 | sylan2b |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |