Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval4.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) |
2 |
|
simpl |
|- ( ( A e. ZZ /\ N e. NN ) -> A e. ZZ ) |
3 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
4 |
3
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N e. ZZ ) |
5 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
6 |
5
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N =/= 0 ) |
7 |
1
|
lgsval4 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) |
8 |
2 4 6 7
|
syl3anc |
|- ( ( A e. ZZ /\ N e. NN ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) |
9 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
10 |
9
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> 0 < N ) |
11 |
|
0re |
|- 0 e. RR |
12 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
13 |
12
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N e. RR ) |
14 |
|
ltnsym |
|- ( ( 0 e. RR /\ N e. RR ) -> ( 0 < N -> -. N < 0 ) ) |
15 |
11 13 14
|
sylancr |
|- ( ( A e. ZZ /\ N e. NN ) -> ( 0 < N -> -. N < 0 ) ) |
16 |
10 15
|
mpd |
|- ( ( A e. ZZ /\ N e. NN ) -> -. N < 0 ) |
17 |
16
|
intnanrd |
|- ( ( A e. ZZ /\ N e. NN ) -> -. ( N < 0 /\ A < 0 ) ) |
18 |
17
|
iffalsed |
|- ( ( A e. ZZ /\ N e. NN ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) |
19 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
20 |
19
|
adantl |
|- ( ( A e. ZZ /\ N e. NN ) -> N e. NN0 ) |
21 |
20
|
nn0ge0d |
|- ( ( A e. ZZ /\ N e. NN ) -> 0 <_ N ) |
22 |
13 21
|
absidd |
|- ( ( A e. ZZ /\ N e. NN ) -> ( abs ` N ) = N ) |
23 |
22
|
fveq2d |
|- ( ( A e. ZZ /\ N e. NN ) -> ( seq 1 ( x. , F ) ` ( abs ` N ) ) = ( seq 1 ( x. , F ) ` N ) ) |
24 |
18 23
|
oveq12d |
|- ( ( A e. ZZ /\ N e. NN ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) = ( 1 x. ( seq 1 ( x. , F ) ` N ) ) ) |
25 |
|
simpr |
|- ( ( A e. ZZ /\ N e. NN ) -> N e. NN ) |
26 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
27 |
25 26
|
eleqtrdi |
|- ( ( A e. ZZ /\ N e. NN ) -> N e. ( ZZ>= ` 1 ) ) |
28 |
1
|
lgsfcl3 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> ZZ ) |
29 |
2 4 6 28
|
syl3anc |
|- ( ( A e. ZZ /\ N e. NN ) -> F : NN --> ZZ ) |
30 |
|
elfznn |
|- ( x e. ( 1 ... N ) -> x e. NN ) |
31 |
|
ffvelrn |
|- ( ( F : NN --> ZZ /\ x e. NN ) -> ( F ` x ) e. ZZ ) |
32 |
29 30 31
|
syl2an |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ x e. ( 1 ... N ) ) -> ( F ` x ) e. ZZ ) |
33 |
|
zmulcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
34 |
33
|
adantl |
|- ( ( ( A e. ZZ /\ N e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
35 |
27 32 34
|
seqcl |
|- ( ( A e. ZZ /\ N e. NN ) -> ( seq 1 ( x. , F ) ` N ) e. ZZ ) |
36 |
35
|
zcnd |
|- ( ( A e. ZZ /\ N e. NN ) -> ( seq 1 ( x. , F ) ` N ) e. CC ) |
37 |
36
|
mulid2d |
|- ( ( A e. ZZ /\ N e. NN ) -> ( 1 x. ( seq 1 ( x. , F ) ` N ) ) = ( seq 1 ( x. , F ) ` N ) ) |
38 |
8 24 37
|
3eqtrd |
|- ( ( A e. ZZ /\ N e. NN ) -> ( A /L N ) = ( seq 1 ( x. , F ) ` N ) ) |