Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
2 |
|
eqid |
|- ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) = ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) |
3 |
2
|
lgsval2lem |
|- ( ( A e. ZZ /\ n e. Prime ) -> ( A /L n ) = if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ) |
4 |
3
|
3ad2antl1 |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> ( A /L n ) = if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ) |
5 |
4
|
oveq1d |
|- ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) ) |
6 |
5
|
ifeq1da |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
7 |
6
|
mpteq2dv |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) ) |
8 |
1 7
|
eqtr4id |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) |