| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
| 2 |
1
|
adantl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. Prime ) |
| 3 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. ZZ ) |
| 5 |
|
lgscl |
|- ( ( A e. ZZ /\ P e. ZZ ) -> ( A /L P ) e. ZZ ) |
| 6 |
4 5
|
syldan |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) e. ZZ ) |
| 7 |
6
|
zred |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) e. RR ) |
| 8 |
|
peano2re |
|- ( ( A /L P ) e. RR -> ( ( A /L P ) + 1 ) e. RR ) |
| 9 |
7 8
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) + 1 ) e. RR ) |
| 10 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 11 |
10
|
adantl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 12 |
11
|
nnnn0d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 13 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 14 |
12 13
|
syldan |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
| 15 |
14
|
zred |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. RR ) |
| 16 |
|
peano2re |
|- ( ( A ^ ( ( P - 1 ) / 2 ) ) e. RR -> ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR ) |
| 17 |
15 16
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR ) |
| 18 |
|
neg1rr |
|- -u 1 e. RR |
| 19 |
18
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> -u 1 e. RR ) |
| 20 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 21 |
2 20
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. NN ) |
| 22 |
21
|
nnrpd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. RR+ ) |
| 23 |
|
lgsval3 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |
| 24 |
23
|
eqcomd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( A /L P ) ) |
| 25 |
17 22
|
modcld |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. RR ) |
| 26 |
25
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. CC ) |
| 27 |
|
ax-1cn |
|- 1 e. CC |
| 28 |
27
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> 1 e. CC ) |
| 29 |
7
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) e. CC ) |
| 30 |
26 28 29
|
subadd2d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( A /L P ) <-> ( ( A /L P ) + 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) |
| 31 |
24 30
|
mpbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) + 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
| 32 |
31
|
oveq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) mod P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) mod P ) ) |
| 33 |
|
modabs2 |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR /\ P e. RR+ ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
| 34 |
17 22 33
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
| 35 |
32 34
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
| 36 |
|
modadd1 |
|- ( ( ( ( ( A /L P ) + 1 ) e. RR /\ ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR ) /\ ( -u 1 e. RR /\ P e. RR+ ) /\ ( ( ( A /L P ) + 1 ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) -> ( ( ( ( A /L P ) + 1 ) + -u 1 ) mod P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) mod P ) ) |
| 37 |
9 17 19 22 35 36
|
syl221anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A /L P ) + 1 ) + -u 1 ) mod P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) mod P ) ) |
| 38 |
9
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) + 1 ) e. CC ) |
| 39 |
|
negsub |
|- ( ( ( ( A /L P ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( A /L P ) + 1 ) + -u 1 ) = ( ( ( A /L P ) + 1 ) - 1 ) ) |
| 40 |
38 27 39
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) + -u 1 ) = ( ( ( A /L P ) + 1 ) - 1 ) ) |
| 41 |
|
pncan |
|- ( ( ( A /L P ) e. CC /\ 1 e. CC ) -> ( ( ( A /L P ) + 1 ) - 1 ) = ( A /L P ) ) |
| 42 |
29 27 41
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) - 1 ) = ( A /L P ) ) |
| 43 |
40 42
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) + -u 1 ) = ( A /L P ) ) |
| 44 |
43
|
oveq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A /L P ) + 1 ) + -u 1 ) mod P ) = ( ( A /L P ) mod P ) ) |
| 45 |
17
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. CC ) |
| 46 |
|
negsub |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) ) |
| 47 |
45 27 46
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) ) |
| 48 |
15
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. CC ) |
| 49 |
|
pncan |
|- ( ( ( A ^ ( ( P - 1 ) / 2 ) ) e. CC /\ 1 e. CC ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
| 50 |
48 27 49
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
| 51 |
47 50
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
| 52 |
51
|
oveq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) mod P ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 53 |
37 44 52
|
3eqtr3d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) mod P ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |