Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
2 |
1
|
adantl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. Prime ) |
3 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
4 |
2 3
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. ZZ ) |
5 |
|
lgscl |
|- ( ( A e. ZZ /\ P e. ZZ ) -> ( A /L P ) e. ZZ ) |
6 |
4 5
|
syldan |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) e. ZZ ) |
7 |
6
|
zred |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) e. RR ) |
8 |
|
peano2re |
|- ( ( A /L P ) e. RR -> ( ( A /L P ) + 1 ) e. RR ) |
9 |
7 8
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) + 1 ) e. RR ) |
10 |
|
oddprm |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) e. NN ) |
11 |
10
|
adantl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) / 2 ) e. NN ) |
12 |
11
|
nnnn0d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
13 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( ( P - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
14 |
12 13
|
syldan |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. ZZ ) |
15 |
14
|
zred |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. RR ) |
16 |
|
peano2re |
|- ( ( A ^ ( ( P - 1 ) / 2 ) ) e. RR -> ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR ) |
17 |
15 16
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR ) |
18 |
|
neg1rr |
|- -u 1 e. RR |
19 |
18
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> -u 1 e. RR ) |
20 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
21 |
2 20
|
syl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. NN ) |
22 |
21
|
nnrpd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> P e. RR+ ) |
23 |
|
lgsval3 |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) ) |
24 |
23
|
eqcomd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( A /L P ) ) |
25 |
17 22
|
modcld |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. RR ) |
26 |
25
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) e. CC ) |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
27
|
a1i |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> 1 e. CC ) |
29 |
7
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A /L P ) e. CC ) |
30 |
26 28 29
|
subadd2d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) - 1 ) = ( A /L P ) <-> ( ( A /L P ) + 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) ) |
31 |
24 30
|
mpbid |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) + 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
32 |
31
|
oveq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) mod P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) mod P ) ) |
33 |
|
modabs2 |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR /\ P e. RR+ ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
34 |
17 22 33
|
syl2anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
35 |
32 34
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) |
36 |
|
modadd1 |
|- ( ( ( ( ( A /L P ) + 1 ) e. RR /\ ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. RR ) /\ ( -u 1 e. RR /\ P e. RR+ ) /\ ( ( ( A /L P ) + 1 ) mod P ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) mod P ) ) -> ( ( ( ( A /L P ) + 1 ) + -u 1 ) mod P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) mod P ) ) |
37 |
9 17 19 22 35 36
|
syl221anc |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A /L P ) + 1 ) + -u 1 ) mod P ) = ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) mod P ) ) |
38 |
9
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) + 1 ) e. CC ) |
39 |
|
negsub |
|- ( ( ( ( A /L P ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( A /L P ) + 1 ) + -u 1 ) = ( ( ( A /L P ) + 1 ) - 1 ) ) |
40 |
38 27 39
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) + -u 1 ) = ( ( ( A /L P ) + 1 ) - 1 ) ) |
41 |
|
pncan |
|- ( ( ( A /L P ) e. CC /\ 1 e. CC ) -> ( ( ( A /L P ) + 1 ) - 1 ) = ( A /L P ) ) |
42 |
29 27 41
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) - 1 ) = ( A /L P ) ) |
43 |
40 42
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A /L P ) + 1 ) + -u 1 ) = ( A /L P ) ) |
44 |
43
|
oveq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A /L P ) + 1 ) + -u 1 ) mod P ) = ( ( A /L P ) mod P ) ) |
45 |
17
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. CC ) |
46 |
|
negsub |
|- ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) ) |
47 |
45 27 46
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) = ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) ) |
48 |
15
|
recnd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( A ^ ( ( P - 1 ) / 2 ) ) e. CC ) |
49 |
|
pncan |
|- ( ( ( A ^ ( ( P - 1 ) / 2 ) ) e. CC /\ 1 e. CC ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
50 |
48 27 49
|
sylancl |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) - 1 ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
51 |
47 50
|
eqtrd |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) = ( A ^ ( ( P - 1 ) / 2 ) ) ) |
52 |
51
|
oveq1d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( ( ( A ^ ( ( P - 1 ) / 2 ) ) + 1 ) + -u 1 ) mod P ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
53 |
37 44 52
|
3eqtr3d |
|- ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) mod P ) = ( ( A ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |