| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhop.a |
|- ( ph -> A C_ RR ) |
| 2 |
|
lhop.f |
|- ( ph -> F : A --> RR ) |
| 3 |
|
lhop.g |
|- ( ph -> G : A --> RR ) |
| 4 |
|
lhop.i |
|- ( ph -> I e. ( topGen ` ran (,) ) ) |
| 5 |
|
lhop.b |
|- ( ph -> B e. I ) |
| 6 |
|
lhop.d |
|- D = ( I \ { B } ) |
| 7 |
|
lhop.if |
|- ( ph -> D C_ dom ( RR _D F ) ) |
| 8 |
|
lhop.ig |
|- ( ph -> D C_ dom ( RR _D G ) ) |
| 9 |
|
lhop.f0 |
|- ( ph -> 0 e. ( F limCC B ) ) |
| 10 |
|
lhop.g0 |
|- ( ph -> 0 e. ( G limCC B ) ) |
| 11 |
|
lhop.gn0 |
|- ( ph -> -. 0 e. ( G " D ) ) |
| 12 |
|
lhop.gd0 |
|- ( ph -> -. 0 e. ( ( RR _D G ) " D ) ) |
| 13 |
|
lhop.c |
|- ( ph -> C e. ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
| 14 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 15 |
14
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
| 16 |
15
|
a1i |
|- ( ph -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) ) |
| 17 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 18 |
14 17
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 19 |
18
|
mopni2 |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ I e. ( topGen ` ran (,) ) /\ B e. I ) -> E. r e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I ) |
| 20 |
16 4 5 19
|
syl3anc |
|- ( ph -> E. r e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I ) |
| 21 |
|
elssuni |
|- ( I e. ( topGen ` ran (,) ) -> I C_ U. ( topGen ` ran (,) ) ) |
| 22 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 23 |
21 22
|
sseqtrrdi |
|- ( I e. ( topGen ` ran (,) ) -> I C_ RR ) |
| 24 |
4 23
|
syl |
|- ( ph -> I C_ RR ) |
| 25 |
24 5
|
sseldd |
|- ( ph -> B e. RR ) |
| 26 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
| 27 |
14
|
bl2ioo |
|- ( ( B e. RR /\ r e. RR ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 28 |
25 26 27
|
syl2an |
|- ( ( ph /\ r e. RR+ ) -> ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 29 |
28
|
sseq1d |
|- ( ( ph /\ r e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I <-> ( ( B - r ) (,) ( B + r ) ) C_ I ) ) |
| 30 |
25
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. RR ) |
| 31 |
|
simprl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> r e. RR+ ) |
| 32 |
31
|
rpred |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> r e. RR ) |
| 33 |
30 32
|
resubcld |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B - r ) e. RR ) |
| 34 |
33
|
rexrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B - r ) e. RR* ) |
| 35 |
30 31
|
ltsubrpd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B - r ) < B ) |
| 36 |
2
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> F : A --> RR ) |
| 37 |
|
ssun1 |
|- ( ( B - r ) (,) B ) C_ ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) |
| 38 |
|
unass |
|- ( ( { B } u. ( ( B - r ) (,) B ) ) u. ( B (,) ( B + r ) ) ) = ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) |
| 39 |
|
uncom |
|- ( { B } u. ( ( B - r ) (,) B ) ) = ( ( ( B - r ) (,) B ) u. { B } ) |
| 40 |
39
|
uneq1i |
|- ( ( { B } u. ( ( B - r ) (,) B ) ) u. ( B (,) ( B + r ) ) ) = ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) |
| 41 |
38 40
|
eqtr3i |
|- ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) |
| 42 |
30
|
rexrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. RR* ) |
| 43 |
30 32
|
readdcld |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B + r ) e. RR ) |
| 44 |
43
|
rexrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B + r ) e. RR* ) |
| 45 |
30 31
|
ltaddrpd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B < ( B + r ) ) |
| 46 |
|
ioojoin |
|- ( ( ( ( B - r ) e. RR* /\ B e. RR* /\ ( B + r ) e. RR* ) /\ ( ( B - r ) < B /\ B < ( B + r ) ) ) -> ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 47 |
34 42 44 35 45 46
|
syl32anc |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( ( B - r ) (,) B ) u. { B } ) u. ( B (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 48 |
41 47
|
eqtrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 49 |
|
elioo2 |
|- ( ( ( B - r ) e. RR* /\ ( B + r ) e. RR* ) -> ( B e. ( ( B - r ) (,) ( B + r ) ) <-> ( B e. RR /\ ( B - r ) < B /\ B < ( B + r ) ) ) ) |
| 50 |
34 44 49
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B e. ( ( B - r ) (,) ( B + r ) ) <-> ( B e. RR /\ ( B - r ) < B /\ B < ( B + r ) ) ) ) |
| 51 |
30 35 45 50
|
mpbir3and |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. ( ( B - r ) (,) ( B + r ) ) ) |
| 52 |
51
|
snssd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> { B } C_ ( ( B - r ) (,) ( B + r ) ) ) |
| 53 |
|
incom |
|- ( { B } i^i ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) i^i { B } ) |
| 54 |
|
ubioo |
|- -. B e. ( ( B - r ) (,) B ) |
| 55 |
|
lbioo |
|- -. B e. ( B (,) ( B + r ) ) |
| 56 |
54 55
|
pm3.2ni |
|- -. ( B e. ( ( B - r ) (,) B ) \/ B e. ( B (,) ( B + r ) ) ) |
| 57 |
|
elun |
|- ( B e. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) <-> ( B e. ( ( B - r ) (,) B ) \/ B e. ( B (,) ( B + r ) ) ) ) |
| 58 |
56 57
|
mtbir |
|- -. B e. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) |
| 59 |
|
disjsn |
|- ( ( ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) i^i { B } ) = (/) <-> -. B e. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) |
| 60 |
58 59
|
mpbir |
|- ( ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) i^i { B } ) = (/) |
| 61 |
53 60
|
eqtri |
|- ( { B } i^i ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = (/) |
| 62 |
|
uneqdifeq |
|- ( ( { B } C_ ( ( B - r ) (,) ( B + r ) ) /\ ( { B } i^i ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = (/) ) -> ( ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( B - r ) (,) ( B + r ) ) <-> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) = ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) ) |
| 63 |
52 61 62
|
sylancl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( { B } u. ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) = ( ( B - r ) (,) ( B + r ) ) <-> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) = ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) ) |
| 64 |
48 63
|
mpbid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) = ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) ) |
| 65 |
37 64
|
sseqtrrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) |
| 66 |
|
ssdif |
|- ( ( ( B - r ) (,) ( B + r ) ) C_ I -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ ( I \ { B } ) ) |
| 67 |
66
|
ad2antll |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ ( I \ { B } ) ) |
| 68 |
67 6
|
sseqtrrdi |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ D ) |
| 69 |
|
ax-resscn |
|- RR C_ CC |
| 70 |
69
|
a1i |
|- ( ph -> RR C_ CC ) |
| 71 |
|
fss |
|- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
| 72 |
2 69 71
|
sylancl |
|- ( ph -> F : A --> CC ) |
| 73 |
70 72 1
|
dvbss |
|- ( ph -> dom ( RR _D F ) C_ A ) |
| 74 |
7 73
|
sstrd |
|- ( ph -> D C_ A ) |
| 75 |
74
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ A ) |
| 76 |
68 75
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) C_ A ) |
| 77 |
65 76
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ A ) |
| 78 |
36 77
|
fssresd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( F |` ( ( B - r ) (,) B ) ) : ( ( B - r ) (,) B ) --> RR ) |
| 79 |
3
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> G : A --> RR ) |
| 80 |
79 77
|
fssresd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G |` ( ( B - r ) (,) B ) ) : ( ( B - r ) (,) B ) --> RR ) |
| 81 |
69
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> RR C_ CC ) |
| 82 |
72
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> F : A --> CC ) |
| 83 |
1
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> A C_ RR ) |
| 84 |
|
ioossre |
|- ( ( B - r ) (,) B ) C_ RR |
| 85 |
84
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ RR ) |
| 86 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 87 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 88 |
86 87
|
dvres |
|- ( ( ( RR C_ CC /\ F : A --> CC ) /\ ( A C_ RR /\ ( ( B - r ) (,) B ) C_ RR ) ) -> ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 89 |
81 82 83 85 88
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 90 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 91 |
|
iooretop |
|- ( ( B - r ) (,) B ) e. ( topGen ` ran (,) ) |
| 92 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( B - r ) (,) B ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
| 93 |
90 91 92
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) |
| 94 |
93
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) |
| 95 |
89 94
|
eqtrdi |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ) |
| 96 |
95
|
dmeqd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = dom ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ) |
| 97 |
65 68
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ D ) |
| 98 |
7
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ dom ( RR _D F ) ) |
| 99 |
97 98
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ dom ( RR _D F ) ) |
| 100 |
|
ssdmres |
|- ( ( ( B - r ) (,) B ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
| 101 |
99 100
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
| 102 |
96 101
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) = ( ( B - r ) (,) B ) ) |
| 103 |
|
fss |
|- ( ( G : A --> RR /\ RR C_ CC ) -> G : A --> CC ) |
| 104 |
3 69 103
|
sylancl |
|- ( ph -> G : A --> CC ) |
| 105 |
104
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> G : A --> CC ) |
| 106 |
86 87
|
dvres |
|- ( ( ( RR C_ CC /\ G : A --> CC ) /\ ( A C_ RR /\ ( ( B - r ) (,) B ) C_ RR ) ) -> ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 107 |
81 105 83 85 106
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) ) |
| 108 |
93
|
reseq2i |
|- ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) |
| 109 |
107 108
|
eqtrdi |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ) |
| 110 |
109
|
dmeqd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = dom ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ) |
| 111 |
8
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ dom ( RR _D G ) ) |
| 112 |
97 111
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ dom ( RR _D G ) ) |
| 113 |
|
ssdmres |
|- ( ( ( B - r ) (,) B ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
| 114 |
112 113
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) = ( ( B - r ) (,) B ) ) |
| 115 |
110 114
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( B - r ) (,) B ) ) |
| 116 |
|
limcresi |
|- ( F limCC B ) C_ ( ( F |` ( ( B - r ) (,) B ) ) limCC B ) |
| 117 |
9
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( F limCC B ) ) |
| 118 |
116 117
|
sselid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( F |` ( ( B - r ) (,) B ) ) limCC B ) ) |
| 119 |
|
limcresi |
|- ( G limCC B ) C_ ( ( G |` ( ( B - r ) (,) B ) ) limCC B ) |
| 120 |
10
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( G limCC B ) ) |
| 121 |
119 120
|
sselid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( G |` ( ( B - r ) (,) B ) ) limCC B ) ) |
| 122 |
|
df-ima |
|- ( G " ( ( B - r ) (,) B ) ) = ran ( G |` ( ( B - r ) (,) B ) ) |
| 123 |
|
imass2 |
|- ( ( ( B - r ) (,) B ) C_ D -> ( G " ( ( B - r ) (,) B ) ) C_ ( G " D ) ) |
| 124 |
97 123
|
syl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G " ( ( B - r ) (,) B ) ) C_ ( G " D ) ) |
| 125 |
122 124
|
eqsstrrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( G |` ( ( B - r ) (,) B ) ) C_ ( G " D ) ) |
| 126 |
11
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ( G " D ) ) |
| 127 |
125 126
|
ssneldd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( G |` ( ( B - r ) (,) B ) ) ) |
| 128 |
109
|
rneqd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ran ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ) |
| 129 |
|
df-ima |
|- ( ( RR _D G ) " ( ( B - r ) (,) B ) ) = ran ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) |
| 130 |
128 129
|
eqtr4di |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) = ( ( RR _D G ) " ( ( B - r ) (,) B ) ) ) |
| 131 |
|
imass2 |
|- ( ( ( B - r ) (,) B ) C_ D -> ( ( RR _D G ) " ( ( B - r ) (,) B ) ) C_ ( ( RR _D G ) " D ) ) |
| 132 |
97 131
|
syl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D G ) " ( ( B - r ) (,) B ) ) C_ ( ( RR _D G ) " D ) ) |
| 133 |
130 132
|
eqsstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) C_ ( ( RR _D G ) " D ) ) |
| 134 |
12
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ( ( RR _D G ) " D ) ) |
| 135 |
133 134
|
ssneldd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ) |
| 136 |
|
limcresi |
|- ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) |
| 137 |
97
|
resmptd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 138 |
95
|
fveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ` z ) ) |
| 139 |
|
fvres |
|- ( z e. ( ( B - r ) (,) B ) -> ( ( ( RR _D F ) |` ( ( B - r ) (,) B ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 140 |
138 139
|
sylan9eq |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( B - r ) (,) B ) ) -> ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 141 |
109
|
fveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ` z ) ) |
| 142 |
|
fvres |
|- ( z e. ( ( B - r ) (,) B ) -> ( ( ( RR _D G ) |` ( ( B - r ) (,) B ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
| 143 |
141 142
|
sylan9eq |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( B - r ) (,) B ) ) -> ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
| 144 |
140 143
|
oveq12d |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( B - r ) (,) B ) ) -> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) = ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |
| 145 |
144
|
mpteq2dva |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 146 |
137 145
|
eqtr4d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) ) |
| 147 |
146
|
oveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) = ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) limCC B ) ) |
| 148 |
136 147
|
sseqtrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) limCC B ) ) |
| 149 |
13
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
| 150 |
148 149
|
sseldd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( RR _D ( F |` ( ( B - r ) (,) B ) ) ) ` z ) / ( ( RR _D ( G |` ( ( B - r ) (,) B ) ) ) ` z ) ) ) limCC B ) ) |
| 151 |
34 30 35 78 80 102 115 118 121 127 135 150
|
lhop2 |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) limCC B ) ) |
| 152 |
65
|
resmptd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 153 |
|
fvres |
|- ( z e. ( ( B - r ) (,) B ) -> ( ( F |` ( ( B - r ) (,) B ) ) ` z ) = ( F ` z ) ) |
| 154 |
|
fvres |
|- ( z e. ( ( B - r ) (,) B ) -> ( ( G |` ( ( B - r ) (,) B ) ) ` z ) = ( G ` z ) ) |
| 155 |
153 154
|
oveq12d |
|- ( z e. ( ( B - r ) (,) B ) -> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) = ( ( F ` z ) / ( G ` z ) ) ) |
| 156 |
155
|
mpteq2ia |
|- ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |
| 157 |
152 156
|
eqtr4di |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) = ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) ) |
| 158 |
157
|
oveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) = ( ( z e. ( ( B - r ) (,) B ) |-> ( ( ( F |` ( ( B - r ) (,) B ) ) ` z ) / ( ( G |` ( ( B - r ) (,) B ) ) ` z ) ) ) limCC B ) ) |
| 159 |
151 158
|
eleqtrrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) ) |
| 160 |
|
ssun2 |
|- ( B (,) ( B + r ) ) C_ ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) |
| 161 |
160 64
|
sseqtrrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) |
| 162 |
161 76
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ A ) |
| 163 |
36 162
|
fssresd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( F |` ( B (,) ( B + r ) ) ) : ( B (,) ( B + r ) ) --> RR ) |
| 164 |
79 162
|
fssresd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G |` ( B (,) ( B + r ) ) ) : ( B (,) ( B + r ) ) --> RR ) |
| 165 |
|
ioossre |
|- ( B (,) ( B + r ) ) C_ RR |
| 166 |
165
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ RR ) |
| 167 |
86 87
|
dvres |
|- ( ( ( RR C_ CC /\ F : A --> CC ) /\ ( A C_ RR /\ ( B (,) ( B + r ) ) C_ RR ) ) -> ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 168 |
81 82 83 166 167
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 169 |
|
iooretop |
|- ( B (,) ( B + r ) ) e. ( topGen ` ran (,) ) |
| 170 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( B (,) ( B + r ) ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
| 171 |
90 169 170
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) |
| 172 |
171
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) |
| 173 |
168 172
|
eqtrdi |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ) |
| 174 |
173
|
dmeqd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = dom ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ) |
| 175 |
161 68
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ D ) |
| 176 |
175 98
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ dom ( RR _D F ) ) |
| 177 |
|
ssdmres |
|- ( ( B (,) ( B + r ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
| 178 |
176 177
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
| 179 |
174 178
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) = ( B (,) ( B + r ) ) ) |
| 180 |
86 87
|
dvres |
|- ( ( ( RR C_ CC /\ G : A --> CC ) /\ ( A C_ RR /\ ( B (,) ( B + r ) ) C_ RR ) ) -> ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 181 |
81 105 83 166 180
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) ) |
| 182 |
171
|
reseq2i |
|- ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) |
| 183 |
181 182
|
eqtrdi |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ) |
| 184 |
183
|
dmeqd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = dom ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ) |
| 185 |
175 111
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ dom ( RR _D G ) ) |
| 186 |
|
ssdmres |
|- ( ( B (,) ( B + r ) ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
| 187 |
185 186
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) = ( B (,) ( B + r ) ) ) |
| 188 |
184 187
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> dom ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( B (,) ( B + r ) ) ) |
| 189 |
|
limcresi |
|- ( F limCC B ) C_ ( ( F |` ( B (,) ( B + r ) ) ) limCC B ) |
| 190 |
189 117
|
sselid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( F |` ( B (,) ( B + r ) ) ) limCC B ) ) |
| 191 |
|
limcresi |
|- ( G limCC B ) C_ ( ( G |` ( B (,) ( B + r ) ) ) limCC B ) |
| 192 |
191 120
|
sselid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> 0 e. ( ( G |` ( B (,) ( B + r ) ) ) limCC B ) ) |
| 193 |
|
df-ima |
|- ( G " ( B (,) ( B + r ) ) ) = ran ( G |` ( B (,) ( B + r ) ) ) |
| 194 |
|
imass2 |
|- ( ( B (,) ( B + r ) ) C_ D -> ( G " ( B (,) ( B + r ) ) ) C_ ( G " D ) ) |
| 195 |
175 194
|
syl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( G " ( B (,) ( B + r ) ) ) C_ ( G " D ) ) |
| 196 |
193 195
|
eqsstrrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( G |` ( B (,) ( B + r ) ) ) C_ ( G " D ) ) |
| 197 |
196 126
|
ssneldd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( G |` ( B (,) ( B + r ) ) ) ) |
| 198 |
183
|
rneqd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ran ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ) |
| 199 |
|
df-ima |
|- ( ( RR _D G ) " ( B (,) ( B + r ) ) ) = ran ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) |
| 200 |
198 199
|
eqtr4di |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) = ( ( RR _D G ) " ( B (,) ( B + r ) ) ) ) |
| 201 |
|
imass2 |
|- ( ( B (,) ( B + r ) ) C_ D -> ( ( RR _D G ) " ( B (,) ( B + r ) ) ) C_ ( ( RR _D G ) " D ) ) |
| 202 |
175 201
|
syl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D G ) " ( B (,) ( B + r ) ) ) C_ ( ( RR _D G ) " D ) ) |
| 203 |
200 202
|
eqsstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) C_ ( ( RR _D G ) " D ) ) |
| 204 |
203 134
|
ssneldd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> -. 0 e. ran ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ) |
| 205 |
|
limcresi |
|- ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) |
| 206 |
175
|
resmptd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 207 |
173
|
fveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ` z ) ) |
| 208 |
|
fvres |
|- ( z e. ( B (,) ( B + r ) ) -> ( ( ( RR _D F ) |` ( B (,) ( B + r ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 209 |
207 208
|
sylan9eq |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( B (,) ( B + r ) ) ) -> ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( RR _D F ) ` z ) ) |
| 210 |
183
|
fveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ` z ) ) |
| 211 |
|
fvres |
|- ( z e. ( B (,) ( B + r ) ) -> ( ( ( RR _D G ) |` ( B (,) ( B + r ) ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
| 212 |
210 211
|
sylan9eq |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( B (,) ( B + r ) ) ) -> ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) = ( ( RR _D G ) ` z ) ) |
| 213 |
209 212
|
oveq12d |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( B (,) ( B + r ) ) ) -> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) = ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |
| 214 |
213
|
mpteq2dva |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) ) |
| 215 |
206 214
|
eqtr4d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) ) |
| 216 |
215
|
oveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) = ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) limCC B ) ) |
| 217 |
205 216
|
sseqtrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) C_ ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) limCC B ) ) |
| 218 |
217 149
|
sseldd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( RR _D ( F |` ( B (,) ( B + r ) ) ) ) ` z ) / ( ( RR _D ( G |` ( B (,) ( B + r ) ) ) ) ` z ) ) ) limCC B ) ) |
| 219 |
30 44 45 163 164 179 188 190 192 197 204 218
|
lhop1 |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) limCC B ) ) |
| 220 |
161
|
resmptd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 221 |
|
fvres |
|- ( z e. ( B (,) ( B + r ) ) -> ( ( F |` ( B (,) ( B + r ) ) ) ` z ) = ( F ` z ) ) |
| 222 |
|
fvres |
|- ( z e. ( B (,) ( B + r ) ) -> ( ( G |` ( B (,) ( B + r ) ) ) ` z ) = ( G ` z ) ) |
| 223 |
221 222
|
oveq12d |
|- ( z e. ( B (,) ( B + r ) ) -> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) = ( ( F ` z ) / ( G ` z ) ) ) |
| 224 |
223
|
mpteq2ia |
|- ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( F ` z ) / ( G ` z ) ) ) |
| 225 |
220 224
|
eqtr4di |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) = ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) ) |
| 226 |
225
|
oveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) = ( ( z e. ( B (,) ( B + r ) ) |-> ( ( ( F |` ( B (,) ( B + r ) ) ) ` z ) / ( ( G |` ( B (,) ( B + r ) ) ) ` z ) ) ) limCC B ) ) |
| 227 |
219 226
|
eleqtrrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) |
| 228 |
159 227
|
elind |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) i^i ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) ) |
| 229 |
68
|
resmptd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) = ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
| 230 |
229
|
oveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) limCC B ) = ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 231 |
74
|
sselda |
|- ( ( ph /\ z e. D ) -> z e. A ) |
| 232 |
2
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. RR ) |
| 233 |
231 232
|
syldan |
|- ( ( ph /\ z e. D ) -> ( F ` z ) e. RR ) |
| 234 |
233
|
recnd |
|- ( ( ph /\ z e. D ) -> ( F ` z ) e. CC ) |
| 235 |
3
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( G ` z ) e. RR ) |
| 236 |
231 235
|
syldan |
|- ( ( ph /\ z e. D ) -> ( G ` z ) e. RR ) |
| 237 |
236
|
recnd |
|- ( ( ph /\ z e. D ) -> ( G ` z ) e. CC ) |
| 238 |
11
|
adantr |
|- ( ( ph /\ z e. D ) -> -. 0 e. ( G " D ) ) |
| 239 |
3
|
ffnd |
|- ( ph -> G Fn A ) |
| 240 |
239
|
adantr |
|- ( ( ph /\ z e. D ) -> G Fn A ) |
| 241 |
74
|
adantr |
|- ( ( ph /\ z e. D ) -> D C_ A ) |
| 242 |
|
simpr |
|- ( ( ph /\ z e. D ) -> z e. D ) |
| 243 |
|
fnfvima |
|- ( ( G Fn A /\ D C_ A /\ z e. D ) -> ( G ` z ) e. ( G " D ) ) |
| 244 |
240 241 242 243
|
syl3anc |
|- ( ( ph /\ z e. D ) -> ( G ` z ) e. ( G " D ) ) |
| 245 |
|
eleq1 |
|- ( ( G ` z ) = 0 -> ( ( G ` z ) e. ( G " D ) <-> 0 e. ( G " D ) ) ) |
| 246 |
244 245
|
syl5ibcom |
|- ( ( ph /\ z e. D ) -> ( ( G ` z ) = 0 -> 0 e. ( G " D ) ) ) |
| 247 |
246
|
necon3bd |
|- ( ( ph /\ z e. D ) -> ( -. 0 e. ( G " D ) -> ( G ` z ) =/= 0 ) ) |
| 248 |
238 247
|
mpd |
|- ( ( ph /\ z e. D ) -> ( G ` z ) =/= 0 ) |
| 249 |
234 237 248
|
divcld |
|- ( ( ph /\ z e. D ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
| 250 |
249
|
adantlr |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. D ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
| 251 |
250
|
fmpttd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) : D --> CC ) |
| 252 |
|
difss |
|- ( I \ { B } ) C_ I |
| 253 |
6 252
|
eqsstri |
|- D C_ I |
| 254 |
24 69
|
sstrdi |
|- ( ph -> I C_ CC ) |
| 255 |
253 254
|
sstrid |
|- ( ph -> D C_ CC ) |
| 256 |
255
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> D C_ CC ) |
| 257 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) |
| 258 |
6
|
uneq1i |
|- ( D u. { B } ) = ( ( I \ { B } ) u. { B } ) |
| 259 |
|
undif1 |
|- ( ( I \ { B } ) u. { B } ) = ( I u. { B } ) |
| 260 |
258 259
|
eqtri |
|- ( D u. { B } ) = ( I u. { B } ) |
| 261 |
|
simprr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) ( B + r ) ) C_ I ) |
| 262 |
52 261
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> { B } C_ I ) |
| 263 |
|
ssequn2 |
|- ( { B } C_ I <-> ( I u. { B } ) = I ) |
| 264 |
262 263
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( I u. { B } ) = I ) |
| 265 |
260 264
|
eqtrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( D u. { B } ) = I ) |
| 266 |
265
|
oveq2d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t I ) ) |
| 267 |
24
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> I C_ RR ) |
| 268 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 269 |
86 268
|
rerest |
|- ( I C_ RR -> ( ( TopOpen ` CCfld ) |`t I ) = ( ( topGen ` ran (,) ) |`t I ) ) |
| 270 |
267 269
|
syl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t I ) = ( ( topGen ` ran (,) ) |`t I ) ) |
| 271 |
266 270
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) = ( ( topGen ` ran (,) ) |`t I ) ) |
| 272 |
271
|
fveq2d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) = ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ) |
| 273 |
272
|
fveq1d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ` ( ( B - r ) (,) ( B + r ) ) ) ) |
| 274 |
86
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 275 |
254
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> I C_ CC ) |
| 276 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ I C_ CC ) -> ( ( TopOpen ` CCfld ) |`t I ) e. ( TopOn ` I ) ) |
| 277 |
274 275 276
|
sylancr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t I ) e. ( TopOn ` I ) ) |
| 278 |
|
topontop |
|- ( ( ( TopOpen ` CCfld ) |`t I ) e. ( TopOn ` I ) -> ( ( TopOpen ` CCfld ) |`t I ) e. Top ) |
| 279 |
277 278
|
syl |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( TopOpen ` CCfld ) |`t I ) e. Top ) |
| 280 |
270 279
|
eqeltrrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( topGen ` ran (,) ) |`t I ) e. Top ) |
| 281 |
|
iooretop |
|- ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) |
| 282 |
281
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) ) |
| 283 |
4
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> I e. ( topGen ` ran (,) ) ) |
| 284 |
|
restopn2 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ I e. ( topGen ` ran (,) ) ) -> ( ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) <-> ( ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) ) |
| 285 |
90 283 284
|
sylancr |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) <-> ( ( ( B - r ) (,) ( B + r ) ) e. ( topGen ` ran (,) ) /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) ) |
| 286 |
282 261 285
|
mpbir2and |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) ) |
| 287 |
|
isopn3i |
|- ( ( ( ( topGen ` ran (,) ) |`t I ) e. Top /\ ( ( B - r ) (,) ( B + r ) ) e. ( ( topGen ` ran (,) ) |`t I ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 288 |
280 286 287
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t I ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 289 |
273 288
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 290 |
51 289
|
eleqtrrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) ) |
| 291 |
|
undif1 |
|- ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) = ( ( ( B - r ) (,) ( B + r ) ) u. { B } ) |
| 292 |
|
ssequn2 |
|- ( { B } C_ ( ( B - r ) (,) ( B + r ) ) <-> ( ( ( B - r ) (,) ( B + r ) ) u. { B } ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 293 |
52 292
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( B - r ) (,) ( B + r ) ) u. { B } ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 294 |
291 293
|
eqtrid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) = ( ( B - r ) (,) ( B + r ) ) ) |
| 295 |
294
|
fveq2d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( B - r ) (,) ( B + r ) ) ) ) |
| 296 |
290 295
|
eleqtrrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( D u. { B } ) ) ) ` ( ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) u. { B } ) ) ) |
| 297 |
251 68 256 86 257 296
|
limcres |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) limCC B ) = ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 298 |
84 69
|
sstri |
|- ( ( B - r ) (,) B ) C_ CC |
| 299 |
298
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( B - r ) (,) B ) C_ CC ) |
| 300 |
165 69
|
sstri |
|- ( B (,) ( B + r ) ) C_ CC |
| 301 |
300
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( B (,) ( B + r ) ) C_ CC ) |
| 302 |
68
|
sselda |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) -> z e. D ) |
| 303 |
302 250
|
syldan |
|- ( ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) /\ z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
| 304 |
303
|
fmpttd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) --> CC ) |
| 305 |
64
|
feq2d |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) --> CC <-> ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) --> CC ) ) |
| 306 |
304 305
|
mpbid |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( ( ( B - r ) (,) B ) u. ( B (,) ( B + r ) ) ) --> CC ) |
| 307 |
299 301 306
|
limcun |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) = ( ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) i^i ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) ) |
| 308 |
230 297 307
|
3eqtr3rd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> ( ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( ( B - r ) (,) B ) ) limCC B ) i^i ( ( ( z e. ( ( ( B - r ) (,) ( B + r ) ) \ { B } ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( B (,) ( B + r ) ) ) limCC B ) ) = ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 309 |
228 308
|
eleqtrd |
|- ( ( ph /\ ( r e. RR+ /\ ( ( B - r ) (,) ( B + r ) ) C_ I ) ) -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
| 310 |
309
|
expr |
|- ( ( ph /\ r e. RR+ ) -> ( ( ( B - r ) (,) ( B + r ) ) C_ I -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) ) |
| 311 |
29 310
|
sylbid |
|- ( ( ph /\ r e. RR+ ) -> ( ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) ) |
| 312 |
311
|
rexlimdva |
|- ( ph -> ( E. r e. RR+ ( B ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) C_ I -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) ) |
| 313 |
20 312
|
mpd |
|- ( ph -> C e. ( ( z e. D |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |