Step |
Hyp |
Ref |
Expression |
1 |
|
lhop1.a |
|- ( ph -> A e. RR ) |
2 |
|
lhop1.b |
|- ( ph -> B e. RR* ) |
3 |
|
lhop1.l |
|- ( ph -> A < B ) |
4 |
|
lhop1.f |
|- ( ph -> F : ( A (,) B ) --> RR ) |
5 |
|
lhop1.g |
|- ( ph -> G : ( A (,) B ) --> RR ) |
6 |
|
lhop1.if |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
7 |
|
lhop1.ig |
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
8 |
|
lhop1.f0 |
|- ( ph -> 0 e. ( F limCC A ) ) |
9 |
|
lhop1.g0 |
|- ( ph -> 0 e. ( G limCC A ) ) |
10 |
|
lhop1.gn0 |
|- ( ph -> -. 0 e. ran G ) |
11 |
|
lhop1.gd0 |
|- ( ph -> -. 0 e. ran ( RR _D G ) ) |
12 |
|
lhop1.c |
|- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) ) |
13 |
|
lhop1lem.e |
|- ( ph -> E e. RR+ ) |
14 |
|
lhop1lem.d |
|- ( ph -> D e. RR ) |
15 |
|
lhop1lem.db |
|- ( ph -> D <_ B ) |
16 |
|
lhop1lem.x |
|- ( ph -> X e. ( A (,) D ) ) |
17 |
|
lhop1lem.t |
|- ( ph -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E ) |
18 |
|
lhop1lem.r |
|- R = ( A + ( r / 2 ) ) |
19 |
|
iooss2 |
|- ( ( B e. RR* /\ D <_ B ) -> ( A (,) D ) C_ ( A (,) B ) ) |
20 |
2 15 19
|
syl2anc |
|- ( ph -> ( A (,) D ) C_ ( A (,) B ) ) |
21 |
20 16
|
sseldd |
|- ( ph -> X e. ( A (,) B ) ) |
22 |
4 21
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. RR ) |
23 |
22
|
recnd |
|- ( ph -> ( F ` X ) e. CC ) |
24 |
5 21
|
ffvelrnd |
|- ( ph -> ( G ` X ) e. RR ) |
25 |
24
|
recnd |
|- ( ph -> ( G ` X ) e. CC ) |
26 |
5
|
ffnd |
|- ( ph -> G Fn ( A (,) B ) ) |
27 |
|
fnfvelrn |
|- ( ( G Fn ( A (,) B ) /\ X e. ( A (,) B ) ) -> ( G ` X ) e. ran G ) |
28 |
26 21 27
|
syl2anc |
|- ( ph -> ( G ` X ) e. ran G ) |
29 |
|
eleq1 |
|- ( ( G ` X ) = 0 -> ( ( G ` X ) e. ran G <-> 0 e. ran G ) ) |
30 |
28 29
|
syl5ibcom |
|- ( ph -> ( ( G ` X ) = 0 -> 0 e. ran G ) ) |
31 |
30
|
necon3bd |
|- ( ph -> ( -. 0 e. ran G -> ( G ` X ) =/= 0 ) ) |
32 |
10 31
|
mpd |
|- ( ph -> ( G ` X ) =/= 0 ) |
33 |
23 25 32
|
divcld |
|- ( ph -> ( ( F ` X ) / ( G ` X ) ) e. CC ) |
34 |
|
limccl |
|- ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) C_ CC |
35 |
34 12
|
sselid |
|- ( ph -> C e. CC ) |
36 |
33 35
|
subcld |
|- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) - C ) e. CC ) |
37 |
36
|
abscld |
|- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) e. RR ) |
38 |
13
|
rpred |
|- ( ph -> E e. RR ) |
39 |
|
2re |
|- 2 e. RR |
40 |
39
|
a1i |
|- ( ph -> 2 e. RR ) |
41 |
40 38
|
remulcld |
|- ( ph -> ( 2 x. E ) e. RR ) |
42 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
43 |
42
|
a1i |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
44 |
|
simprl |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> v e. ( TopOpen ` CCfld ) ) |
45 |
|
simprr |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> A e. v ) |
46 |
|
eliooord |
|- ( X e. ( A (,) D ) -> ( A < X /\ X < D ) ) |
47 |
16 46
|
syl |
|- ( ph -> ( A < X /\ X < D ) ) |
48 |
47
|
simpld |
|- ( ph -> A < X ) |
49 |
|
ioossre |
|- ( A (,) D ) C_ RR |
50 |
49 16
|
sselid |
|- ( ph -> X e. RR ) |
51 |
|
difrp |
|- ( ( A e. RR /\ X e. RR ) -> ( A < X <-> ( X - A ) e. RR+ ) ) |
52 |
1 50 51
|
syl2anc |
|- ( ph -> ( A < X <-> ( X - A ) e. RR+ ) ) |
53 |
48 52
|
mpbid |
|- ( ph -> ( X - A ) e. RR+ ) |
54 |
53
|
adantr |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( X - A ) e. RR+ ) |
55 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
56 |
55
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
57 |
56
|
mopni3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ v e. ( TopOpen ` CCfld ) /\ A e. v ) /\ ( X - A ) e. RR+ ) -> E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) ) |
58 |
43 44 45 54 57
|
syl31anc |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) ) |
59 |
|
ssrin |
|- ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( A (,) X ) ) ) |
60 |
|
lbioo |
|- -. A e. ( A (,) X ) |
61 |
|
disjsn |
|- ( ( ( A (,) X ) i^i { A } ) = (/) <-> -. A e. ( A (,) X ) ) |
62 |
60 61
|
mpbir |
|- ( ( A (,) X ) i^i { A } ) = (/) |
63 |
|
disj3 |
|- ( ( ( A (,) X ) i^i { A } ) = (/) <-> ( A (,) X ) = ( ( A (,) X ) \ { A } ) ) |
64 |
62 63
|
mpbi |
|- ( A (,) X ) = ( ( A (,) X ) \ { A } ) |
65 |
64
|
ineq2i |
|- ( v i^i ( A (,) X ) ) = ( v i^i ( ( A (,) X ) \ { A } ) ) |
66 |
59 65
|
sseqtrdi |
|- ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( ( A (,) X ) \ { A } ) ) ) |
67 |
1
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. RR ) |
68 |
|
simprl |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR+ ) |
69 |
68
|
rpred |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR ) |
70 |
69
|
rehalfcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR ) |
71 |
67 70
|
readdcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A + ( r / 2 ) ) e. RR ) |
72 |
18 71
|
eqeltrid |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. RR ) |
73 |
72
|
recnd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. CC ) |
74 |
1
|
recnd |
|- ( ph -> A e. CC ) |
75 |
74
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. CC ) |
76 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
77 |
76
|
cnmetdval |
|- ( ( R e. CC /\ A e. CC ) -> ( R ( abs o. - ) A ) = ( abs ` ( R - A ) ) ) |
78 |
73 75 77
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) = ( abs ` ( R - A ) ) ) |
79 |
18
|
oveq1i |
|- ( R - A ) = ( ( A + ( r / 2 ) ) - A ) |
80 |
69
|
recnd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. CC ) |
81 |
80
|
halfcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. CC ) |
82 |
75 81
|
pncan2d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A + ( r / 2 ) ) - A ) = ( r / 2 ) ) |
83 |
79 82
|
eqtrid |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R - A ) = ( r / 2 ) ) |
84 |
83
|
fveq2d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( R - A ) ) = ( abs ` ( r / 2 ) ) ) |
85 |
68
|
rphalfcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR+ ) |
86 |
85
|
rpred |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR ) |
87 |
85
|
rpge0d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> 0 <_ ( r / 2 ) ) |
88 |
86 87
|
absidd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( r / 2 ) ) = ( r / 2 ) ) |
89 |
78 84 88
|
3eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) = ( r / 2 ) ) |
90 |
|
rphalflt |
|- ( r e. RR+ -> ( r / 2 ) < r ) |
91 |
68 90
|
syl |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) < r ) |
92 |
89 91
|
eqbrtrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) < r ) |
93 |
42
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
94 |
69
|
rexrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR* ) |
95 |
|
elbl3 |
|- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( A e. CC /\ R e. CC ) ) -> ( R e. ( A ( ball ` ( abs o. - ) ) r ) <-> ( R ( abs o. - ) A ) < r ) ) |
96 |
93 94 75 73 95
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R e. ( A ( ball ` ( abs o. - ) ) r ) <-> ( R ( abs o. - ) A ) < r ) ) |
97 |
92 96
|
mpbird |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A ( ball ` ( abs o. - ) ) r ) ) |
98 |
67 85
|
ltaddrpd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A < ( A + ( r / 2 ) ) ) |
99 |
98 18
|
breqtrrdi |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A < R ) |
100 |
50
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X e. RR ) |
101 |
100 67
|
resubcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( X - A ) e. RR ) |
102 |
|
simprr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r < ( X - A ) ) |
103 |
86 69 101 91 102
|
lttrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) < ( X - A ) ) |
104 |
67 86 100
|
ltaddsub2d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A + ( r / 2 ) ) < X <-> ( r / 2 ) < ( X - A ) ) ) |
105 |
103 104
|
mpbird |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A + ( r / 2 ) ) < X ) |
106 |
18 105
|
eqbrtrid |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R < X ) |
107 |
67
|
rexrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. RR* ) |
108 |
50
|
rexrd |
|- ( ph -> X e. RR* ) |
109 |
108
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X e. RR* ) |
110 |
|
elioo2 |
|- ( ( A e. RR* /\ X e. RR* ) -> ( R e. ( A (,) X ) <-> ( R e. RR /\ A < R /\ R < X ) ) ) |
111 |
107 109 110
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R e. ( A (,) X ) <-> ( R e. RR /\ A < R /\ R < X ) ) ) |
112 |
72 99 106 111
|
mpbir3and |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A (,) X ) ) |
113 |
97 112
|
elind |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ) |
114 |
23
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` X ) e. CC ) |
115 |
4
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F : ( A (,) B ) --> RR ) |
116 |
14
|
rexrd |
|- ( ph -> D e. RR* ) |
117 |
47
|
simprd |
|- ( ph -> X < D ) |
118 |
50 14 117
|
ltled |
|- ( ph -> X <_ D ) |
119 |
108 116 2 118 15
|
xrletrd |
|- ( ph -> X <_ B ) |
120 |
|
iooss2 |
|- ( ( B e. RR* /\ X <_ B ) -> ( A (,) X ) C_ ( A (,) B ) ) |
121 |
2 119 120
|
syl2anc |
|- ( ph -> ( A (,) X ) C_ ( A (,) B ) ) |
122 |
121
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) X ) C_ ( A (,) B ) ) |
123 |
122 112
|
sseldd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A (,) B ) ) |
124 |
115 123
|
ffvelrnd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` R ) e. RR ) |
125 |
124
|
recnd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` R ) e. CC ) |
126 |
114 125
|
subcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( F ` X ) - ( F ` R ) ) e. CC ) |
127 |
25
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` X ) e. CC ) |
128 |
5
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G : ( A (,) B ) --> RR ) |
129 |
128 123
|
ffvelrnd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` R ) e. RR ) |
130 |
129
|
recnd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` R ) e. CC ) |
131 |
127 130
|
subcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( G ` X ) - ( G ` R ) ) e. CC ) |
132 |
|
fveq2 |
|- ( z = R -> ( G ` z ) = ( G ` R ) ) |
133 |
132
|
oveq2d |
|- ( z = R -> ( ( G ` X ) - ( G ` z ) ) = ( ( G ` X ) - ( G ` R ) ) ) |
134 |
133
|
neeq1d |
|- ( z = R -> ( ( ( G ` X ) - ( G ` z ) ) =/= 0 <-> ( ( G ` X ) - ( G ` R ) ) =/= 0 ) ) |
135 |
11
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> -. 0 e. ran ( RR _D G ) ) |
136 |
25
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` X ) e. CC ) |
137 |
121
|
sselda |
|- ( ( ph /\ z e. ( A (,) X ) ) -> z e. ( A (,) B ) ) |
138 |
5
|
ffvelrnda |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( G ` z ) e. RR ) |
139 |
137 138
|
syldan |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` z ) e. RR ) |
140 |
139
|
recnd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` z ) e. CC ) |
141 |
136 140
|
subeq0ad |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G ` X ) - ( G ` z ) ) = 0 <-> ( G ` X ) = ( G ` z ) ) ) |
142 |
|
ioossre |
|- ( A (,) B ) C_ RR |
143 |
142 137
|
sselid |
|- ( ( ph /\ z e. ( A (,) X ) ) -> z e. RR ) |
144 |
143
|
adantr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> z e. RR ) |
145 |
50
|
ad2antrr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> X e. RR ) |
146 |
|
eliooord |
|- ( z e. ( A (,) X ) -> ( A < z /\ z < X ) ) |
147 |
146
|
adantl |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( A < z /\ z < X ) ) |
148 |
147
|
simprd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> z < X ) |
149 |
148
|
adantr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> z < X ) |
150 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
151 |
150
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> A e. RR* ) |
152 |
2
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> B e. RR* ) |
153 |
147
|
simpld |
|- ( ( ph /\ z e. ( A (,) X ) ) -> A < z ) |
154 |
108 116 2 117 15
|
xrltletrd |
|- ( ph -> X < B ) |
155 |
154
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> X < B ) |
156 |
|
iccssioo |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < z /\ X < B ) ) -> ( z [,] X ) C_ ( A (,) B ) ) |
157 |
151 152 153 155 156
|
syl22anc |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( z [,] X ) C_ ( A (,) B ) ) |
158 |
157
|
adantr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z [,] X ) C_ ( A (,) B ) ) |
159 |
|
ax-resscn |
|- RR C_ CC |
160 |
159
|
a1i |
|- ( ph -> RR C_ CC ) |
161 |
|
fss |
|- ( ( G : ( A (,) B ) --> RR /\ RR C_ CC ) -> G : ( A (,) B ) --> CC ) |
162 |
5 159 161
|
sylancl |
|- ( ph -> G : ( A (,) B ) --> CC ) |
163 |
142
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
164 |
|
dvcn |
|- ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D G ) = ( A (,) B ) ) -> G e. ( ( A (,) B ) -cn-> CC ) ) |
165 |
160 162 163 7 164
|
syl31anc |
|- ( ph -> G e. ( ( A (,) B ) -cn-> CC ) ) |
166 |
|
cncffvrn |
|- ( ( RR C_ CC /\ G e. ( ( A (,) B ) -cn-> CC ) ) -> ( G e. ( ( A (,) B ) -cn-> RR ) <-> G : ( A (,) B ) --> RR ) ) |
167 |
159 165 166
|
sylancr |
|- ( ph -> ( G e. ( ( A (,) B ) -cn-> RR ) <-> G : ( A (,) B ) --> RR ) ) |
168 |
5 167
|
mpbird |
|- ( ph -> G e. ( ( A (,) B ) -cn-> RR ) ) |
169 |
168
|
ad2antrr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> G e. ( ( A (,) B ) -cn-> RR ) ) |
170 |
|
rescncf |
|- ( ( z [,] X ) C_ ( A (,) B ) -> ( G e. ( ( A (,) B ) -cn-> RR ) -> ( G |` ( z [,] X ) ) e. ( ( z [,] X ) -cn-> RR ) ) ) |
171 |
158 169 170
|
sylc |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( G |` ( z [,] X ) ) e. ( ( z [,] X ) -cn-> RR ) ) |
172 |
159
|
a1i |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> RR C_ CC ) |
173 |
162
|
ad2antrr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> G : ( A (,) B ) --> CC ) |
174 |
142
|
a1i |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( A (,) B ) C_ RR ) |
175 |
158 142
|
sstrdi |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z [,] X ) C_ RR ) |
176 |
55
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
177 |
55 176
|
dvres |
|- ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( z [,] X ) C_ RR ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) ) |
178 |
172 173 174 175 177
|
syl22anc |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) ) |
179 |
|
iccntr |
|- ( ( z e. RR /\ X e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) = ( z (,) X ) ) |
180 |
144 145 179
|
syl2anc |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) = ( z (,) X ) ) |
181 |
180
|
reseq2d |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( z (,) X ) ) ) |
182 |
178 181
|
eqtrd |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( z (,) X ) ) ) |
183 |
182
|
dmeqd |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D ( G |` ( z [,] X ) ) ) = dom ( ( RR _D G ) |` ( z (,) X ) ) ) |
184 |
|
ioossicc |
|- ( z (,) X ) C_ ( z [,] X ) |
185 |
184 158
|
sstrid |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z (,) X ) C_ ( A (,) B ) ) |
186 |
7
|
ad2antrr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D G ) = ( A (,) B ) ) |
187 |
185 186
|
sseqtrrd |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z (,) X ) C_ dom ( RR _D G ) ) |
188 |
|
ssdmres |
|- ( ( z (,) X ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( z (,) X ) ) = ( z (,) X ) ) |
189 |
187 188
|
sylib |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( ( RR _D G ) |` ( z (,) X ) ) = ( z (,) X ) ) |
190 |
183 189
|
eqtrd |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D ( G |` ( z [,] X ) ) ) = ( z (,) X ) ) |
191 |
143
|
rexrd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> z e. RR* ) |
192 |
108
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> X e. RR* ) |
193 |
50
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> X e. RR ) |
194 |
143 193 148
|
ltled |
|- ( ( ph /\ z e. ( A (,) X ) ) -> z <_ X ) |
195 |
|
ubicc2 |
|- ( ( z e. RR* /\ X e. RR* /\ z <_ X ) -> X e. ( z [,] X ) ) |
196 |
191 192 194 195
|
syl3anc |
|- ( ( ph /\ z e. ( A (,) X ) ) -> X e. ( z [,] X ) ) |
197 |
196
|
fvresd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G |` ( z [,] X ) ) ` X ) = ( G ` X ) ) |
198 |
|
lbicc2 |
|- ( ( z e. RR* /\ X e. RR* /\ z <_ X ) -> z e. ( z [,] X ) ) |
199 |
191 192 194 198
|
syl3anc |
|- ( ( ph /\ z e. ( A (,) X ) ) -> z e. ( z [,] X ) ) |
200 |
199
|
fvresd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G |` ( z [,] X ) ) ` z ) = ( G ` z ) ) |
201 |
197 200
|
eqeq12d |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G |` ( z [,] X ) ) ` X ) = ( ( G |` ( z [,] X ) ) ` z ) <-> ( G ` X ) = ( G ` z ) ) ) |
202 |
201
|
biimpar |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( G |` ( z [,] X ) ) ` X ) = ( ( G |` ( z [,] X ) ) ` z ) ) |
203 |
202
|
eqcomd |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( G |` ( z [,] X ) ) ` z ) = ( ( G |` ( z [,] X ) ) ` X ) ) |
204 |
144 145 149 171 190 203
|
rolle |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> E. w e. ( z (,) X ) ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 ) |
205 |
182
|
fveq1d |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = ( ( ( RR _D G ) |` ( z (,) X ) ) ` w ) ) |
206 |
|
fvres |
|- ( w e. ( z (,) X ) -> ( ( ( RR _D G ) |` ( z (,) X ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
207 |
205 206
|
sylan9eq |
|- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
208 |
|
dvf |
|- ( RR _D G ) : dom ( RR _D G ) --> CC |
209 |
7
|
feq2d |
|- ( ph -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
210 |
208 209
|
mpbii |
|- ( ph -> ( RR _D G ) : ( A (,) B ) --> CC ) |
211 |
210
|
ad2antrr |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
212 |
211
|
ffnd |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
213 |
212
|
adantr |
|- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
214 |
185
|
sselda |
|- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> w e. ( A (,) B ) ) |
215 |
|
fnfvelrn |
|- ( ( ( RR _D G ) Fn ( A (,) B ) /\ w e. ( A (,) B ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) ) |
216 |
213 214 215
|
syl2anc |
|- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) ) |
217 |
207 216
|
eqeltrd |
|- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) e. ran ( RR _D G ) ) |
218 |
|
eleq1 |
|- ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
219 |
217 218
|
syl5ibcom |
|- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
220 |
219
|
rexlimdva |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( E. w e. ( z (,) X ) ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
221 |
204 220
|
mpd |
|- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> 0 e. ran ( RR _D G ) ) |
222 |
221
|
ex |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) = ( G ` z ) -> 0 e. ran ( RR _D G ) ) ) |
223 |
141 222
|
sylbid |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G ` X ) - ( G ` z ) ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
224 |
223
|
necon3bd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( G ` X ) - ( G ` z ) ) =/= 0 ) ) |
225 |
135 224
|
mpd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) =/= 0 ) |
226 |
225
|
ralrimiva |
|- ( ph -> A. z e. ( A (,) X ) ( ( G ` X ) - ( G ` z ) ) =/= 0 ) |
227 |
226
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A. z e. ( A (,) X ) ( ( G ` X ) - ( G ` z ) ) =/= 0 ) |
228 |
134 227 112
|
rspcdva |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( G ` X ) - ( G ` R ) ) =/= 0 ) |
229 |
126 131 228
|
divcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) e. CC ) |
230 |
35
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> C e. CC ) |
231 |
229 230
|
subcld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) e. CC ) |
232 |
231
|
abscld |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) e. RR ) |
233 |
38
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E e. RR ) |
234 |
116
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> D e. RR* ) |
235 |
117
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X < D ) |
236 |
|
iccssioo |
|- ( ( ( A e. RR* /\ D e. RR* ) /\ ( A < R /\ X < D ) ) -> ( R [,] X ) C_ ( A (,) D ) ) |
237 |
107 234 99 235 236
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ ( A (,) D ) ) |
238 |
20
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) D ) C_ ( A (,) B ) ) |
239 |
237 238
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ ( A (,) B ) ) |
240 |
|
fss |
|- ( ( F : ( A (,) B ) --> RR /\ RR C_ CC ) -> F : ( A (,) B ) --> CC ) |
241 |
4 159 240
|
sylancl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
242 |
|
dvcn |
|- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D F ) = ( A (,) B ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
243 |
160 241 163 6 242
|
syl31anc |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
244 |
|
cncffvrn |
|- ( ( RR C_ CC /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
245 |
159 243 244
|
sylancr |
|- ( ph -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
246 |
4 245
|
mpbird |
|- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
247 |
246
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F e. ( ( A (,) B ) -cn-> RR ) ) |
248 |
|
rescncf |
|- ( ( R [,] X ) C_ ( A (,) B ) -> ( F e. ( ( A (,) B ) -cn-> RR ) -> ( F |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) ) |
249 |
239 247 248
|
sylc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) |
250 |
168
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G e. ( ( A (,) B ) -cn-> RR ) ) |
251 |
|
rescncf |
|- ( ( R [,] X ) C_ ( A (,) B ) -> ( G e. ( ( A (,) B ) -cn-> RR ) -> ( G |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) ) |
252 |
239 250 251
|
sylc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) |
253 |
159
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> RR C_ CC ) |
254 |
241
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F : ( A (,) B ) --> CC ) |
255 |
142
|
a1i |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) B ) C_ RR ) |
256 |
|
iccssre |
|- ( ( R e. RR /\ X e. RR ) -> ( R [,] X ) C_ RR ) |
257 |
72 100 256
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ RR ) |
258 |
55 176
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( R [,] X ) C_ RR ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
259 |
253 254 255 257 258
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
260 |
|
iccntr |
|- ( ( R e. RR /\ X e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) = ( R (,) X ) ) |
261 |
72 100 260
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) = ( R (,) X ) ) |
262 |
261
|
reseq2d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( R (,) X ) ) ) |
263 |
259 262
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( R (,) X ) ) ) |
264 |
263
|
dmeqd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( F |` ( R [,] X ) ) ) = dom ( ( RR _D F ) |` ( R (,) X ) ) ) |
265 |
67 72 99
|
ltled |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A <_ R ) |
266 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ R ) -> ( R (,) X ) C_ ( A (,) X ) ) |
267 |
107 265 266
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) X ) ) |
268 |
118
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X <_ D ) |
269 |
|
iooss2 |
|- ( ( D e. RR* /\ X <_ D ) -> ( A (,) X ) C_ ( A (,) D ) ) |
270 |
234 268 269
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) X ) C_ ( A (,) D ) ) |
271 |
267 270
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) D ) ) |
272 |
271 238
|
sstrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) B ) ) |
273 |
6
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
274 |
272 273
|
sseqtrrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ dom ( RR _D F ) ) |
275 |
|
ssdmres |
|- ( ( R (,) X ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( R (,) X ) ) = ( R (,) X ) ) |
276 |
274 275
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( ( RR _D F ) |` ( R (,) X ) ) = ( R (,) X ) ) |
277 |
264 276
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( F |` ( R [,] X ) ) ) = ( R (,) X ) ) |
278 |
162
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G : ( A (,) B ) --> CC ) |
279 |
55 176
|
dvres |
|- ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( R [,] X ) C_ RR ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
280 |
253 278 255 257 279
|
syl22anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
281 |
261
|
reseq2d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( R (,) X ) ) ) |
282 |
280 281
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( R (,) X ) ) ) |
283 |
282
|
dmeqd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( G |` ( R [,] X ) ) ) = dom ( ( RR _D G ) |` ( R (,) X ) ) ) |
284 |
7
|
adantr |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D G ) = ( A (,) B ) ) |
285 |
272 284
|
sseqtrrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ dom ( RR _D G ) ) |
286 |
|
ssdmres |
|- ( ( R (,) X ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( R (,) X ) ) = ( R (,) X ) ) |
287 |
285 286
|
sylib |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( ( RR _D G ) |` ( R (,) X ) ) = ( R (,) X ) ) |
288 |
283 287
|
eqtrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( G |` ( R [,] X ) ) ) = ( R (,) X ) ) |
289 |
72 100 106 249 252 277 288
|
cmvth |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. w e. ( R (,) X ) ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) ) |
290 |
72
|
rexrd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. RR* ) |
291 |
290
|
adantr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R e. RR* ) |
292 |
108
|
ad2antrr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> X e. RR* ) |
293 |
72 100 106
|
ltled |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R <_ X ) |
294 |
293
|
adantr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R <_ X ) |
295 |
|
ubicc2 |
|- ( ( R e. RR* /\ X e. RR* /\ R <_ X ) -> X e. ( R [,] X ) ) |
296 |
291 292 294 295
|
syl3anc |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> X e. ( R [,] X ) ) |
297 |
296
|
fvresd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F |` ( R [,] X ) ) ` X ) = ( F ` X ) ) |
298 |
|
lbicc2 |
|- ( ( R e. RR* /\ X e. RR* /\ R <_ X ) -> R e. ( R [,] X ) ) |
299 |
291 292 294 298
|
syl3anc |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R e. ( R [,] X ) ) |
300 |
299
|
fvresd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F |` ( R [,] X ) ) ` R ) = ( F ` R ) ) |
301 |
297 300
|
oveq12d |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) = ( ( F ` X ) - ( F ` R ) ) ) |
302 |
282
|
fveq1d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) = ( ( ( RR _D G ) |` ( R (,) X ) ) ` w ) ) |
303 |
|
fvres |
|- ( w e. ( R (,) X ) -> ( ( ( RR _D G ) |` ( R (,) X ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
304 |
302 303
|
sylan9eq |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
305 |
301 304
|
oveq12d |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) ) |
306 |
296
|
fvresd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G |` ( R [,] X ) ) ` X ) = ( G ` X ) ) |
307 |
299
|
fvresd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G |` ( R [,] X ) ) ` R ) = ( G ` R ) ) |
308 |
306 307
|
oveq12d |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) = ( ( G ` X ) - ( G ` R ) ) ) |
309 |
263
|
fveq1d |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) = ( ( ( RR _D F ) |` ( R (,) X ) ) ` w ) ) |
310 |
|
fvres |
|- ( w e. ( R (,) X ) -> ( ( ( RR _D F ) |` ( R (,) X ) ) ` w ) = ( ( RR _D F ) ` w ) ) |
311 |
309 310
|
sylan9eq |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) = ( ( RR _D F ) ` w ) ) |
312 |
308 311
|
oveq12d |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) = ( ( ( G ` X ) - ( G ` R ) ) x. ( ( RR _D F ) ` w ) ) ) |
313 |
131
|
adantr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G ` X ) - ( G ` R ) ) e. CC ) |
314 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
315 |
6
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
316 |
314 315
|
mpbii |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
317 |
316
|
ad2antrr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
318 |
272
|
sselda |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> w e. ( A (,) B ) ) |
319 |
317 318
|
ffvelrnd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D F ) ` w ) e. CC ) |
320 |
313 319
|
mulcomd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( G ` X ) - ( G ` R ) ) x. ( ( RR _D F ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) |
321 |
312 320
|
eqtrd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) |
322 |
305 321
|
eqeq12d |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) ) |
323 |
126
|
adantr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F ` X ) - ( F ` R ) ) e. CC ) |
324 |
210
|
ad2antrr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
325 |
324 318
|
ffvelrnd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) e. CC ) |
326 |
228
|
adantr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G ` X ) - ( G ` R ) ) =/= 0 ) |
327 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> -. 0 e. ran ( RR _D G ) ) |
328 |
324
|
ffnd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
329 |
328 318 215
|
syl2anc |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) ) |
330 |
|
eleq1 |
|- ( ( ( RR _D G ) ` w ) = 0 -> ( ( ( RR _D G ) ` w ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
331 |
329 330
|
syl5ibcom |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( RR _D G ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
332 |
331
|
necon3bd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( RR _D G ) ` w ) =/= 0 ) ) |
333 |
327 332
|
mpd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) =/= 0 ) |
334 |
323 313 319 325 326 333
|
divmuleqd |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) ) |
335 |
322 334
|
bitr4d |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) ) |
336 |
335
|
rexbidva |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( E. w e. ( R (,) X ) ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) ) |
337 |
289 336
|
mpbid |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) |
338 |
|
fveq2 |
|- ( t = w -> ( ( RR _D F ) ` t ) = ( ( RR _D F ) ` w ) ) |
339 |
|
fveq2 |
|- ( t = w -> ( ( RR _D G ) ` t ) = ( ( RR _D G ) ` w ) ) |
340 |
338 339
|
oveq12d |
|- ( t = w -> ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) |
341 |
340
|
fvoveq1d |
|- ( t = w -> ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) = ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) ) |
342 |
341
|
breq1d |
|- ( t = w -> ( ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E <-> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) ) |
343 |
17
|
ad2antrr |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E ) |
344 |
271
|
sselda |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> w e. ( A (,) D ) ) |
345 |
342 343 344
|
rspcdva |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) |
346 |
|
fvoveq1 |
|- ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) = ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) ) |
347 |
346
|
breq1d |
|- ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E <-> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) ) |
348 |
345 347
|
syl5ibrcom |
|- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) ) |
349 |
348
|
rexlimdva |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) ) |
350 |
337 349
|
mpd |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) |
351 |
232 233 350
|
ltled |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) |
352 |
|
fveq2 |
|- ( u = R -> ( F ` u ) = ( F ` R ) ) |
353 |
352
|
oveq2d |
|- ( u = R -> ( ( F ` X ) - ( F ` u ) ) = ( ( F ` X ) - ( F ` R ) ) ) |
354 |
|
fveq2 |
|- ( u = R -> ( G ` u ) = ( G ` R ) ) |
355 |
354
|
oveq2d |
|- ( u = R -> ( ( G ` X ) - ( G ` u ) ) = ( ( G ` X ) - ( G ` R ) ) ) |
356 |
353 355
|
oveq12d |
|- ( u = R -> ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) = ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) ) |
357 |
356
|
fvoveq1d |
|- ( u = R -> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) = ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) ) |
358 |
357
|
breq1d |
|- ( u = R -> ( ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) ) |
359 |
358
|
rspcev |
|- ( ( R e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) /\ ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
360 |
113 351 359
|
syl2anc |
|- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
361 |
360
|
adantlr |
|- ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
362 |
|
ssrexv |
|- ( ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( ( A (,) X ) \ { A } ) ) -> ( E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
363 |
66 361 362
|
syl2imc |
|- ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
364 |
363
|
anassrs |
|- ( ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ r e. RR+ ) /\ r < ( X - A ) ) -> ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
365 |
364
|
expimpd |
|- ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ r e. RR+ ) -> ( ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
366 |
365
|
rexlimdva |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
367 |
58 366
|
mpd |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
368 |
|
inss2 |
|- ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( ( A (,) X ) \ { A } ) |
369 |
|
difss |
|- ( ( A (,) X ) \ { A } ) C_ ( A (,) X ) |
370 |
368 369
|
sstri |
|- ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( A (,) X ) |
371 |
370
|
sseli |
|- ( u e. ( v i^i ( ( A (,) X ) \ { A } ) ) -> u e. ( A (,) X ) ) |
372 |
|
fveq2 |
|- ( z = u -> ( F ` z ) = ( F ` u ) ) |
373 |
372
|
oveq2d |
|- ( z = u -> ( ( F ` X ) - ( F ` z ) ) = ( ( F ` X ) - ( F ` u ) ) ) |
374 |
|
fveq2 |
|- ( z = u -> ( G ` z ) = ( G ` u ) ) |
375 |
374
|
oveq2d |
|- ( z = u -> ( ( G ` X ) - ( G ` z ) ) = ( ( G ` X ) - ( G ` u ) ) ) |
376 |
373 375
|
oveq12d |
|- ( z = u -> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) = ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) ) |
377 |
|
eqid |
|- ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) = ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) |
378 |
|
ovex |
|- ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) e. _V |
379 |
376 377 378
|
fvmpt |
|- ( u e. ( A (,) X ) -> ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) = ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) ) |
380 |
379
|
fvoveq1d |
|- ( u e. ( A (,) X ) -> ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) = ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) ) |
381 |
380
|
breq1d |
|- ( u e. ( A (,) X ) -> ( ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
382 |
371 381
|
syl |
|- ( u e. ( v i^i ( ( A (,) X ) \ { A } ) ) -> ( ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
383 |
382
|
rexbiia |
|- ( E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
384 |
367 383
|
sylibr |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) |
385 |
|
ovex |
|- ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) e. _V |
386 |
385 377
|
fnmpti |
|- ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) Fn ( A (,) X ) |
387 |
|
fvoveq1 |
|- ( x = ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) -> ( abs ` ( x - C ) ) = ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) ) |
388 |
387
|
breq1d |
|- ( x = ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) -> ( ( abs ` ( x - C ) ) <_ E <-> ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) ) |
389 |
388
|
rexima |
|- ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) Fn ( A (,) X ) /\ ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( A (,) X ) ) -> ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) ) |
390 |
386 370 389
|
mp2an |
|- ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) |
391 |
384 390
|
sylibr |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E ) |
392 |
|
dfrex2 |
|- ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> -. A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) |
393 |
391 392
|
sylib |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> -. A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) |
394 |
|
ssrab |
|- ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ CC /\ A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) ) |
395 |
394
|
simprbi |
|- ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) |
396 |
393 395
|
nsyl |
|- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) |
397 |
396
|
expr |
|- ( ( ph /\ v e. ( TopOpen ` CCfld ) ) -> ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
398 |
397
|
ralrimiva |
|- ( ph -> A. v e. ( TopOpen ` CCfld ) ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
399 |
|
ralinexa |
|- ( A. v e. ( TopOpen ` CCfld ) ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) <-> -. E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
400 |
398 399
|
sylib |
|- ( ph -> -. E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
401 |
|
fvoveq1 |
|- ( x = ( ( F ` X ) / ( G ` X ) ) -> ( abs ` ( x - C ) ) = ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) ) |
402 |
401
|
breq1d |
|- ( x = ( ( F ` X ) / ( G ` X ) ) -> ( ( abs ` ( x - C ) ) <_ E <-> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
403 |
402
|
notbid |
|- ( x = ( ( F ` X ) / ( G ` X ) ) -> ( -. ( abs ` ( x - C ) ) <_ E <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
404 |
403
|
elrab3 |
|- ( ( ( F ` X ) / ( G ` X ) ) e. CC -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
405 |
33 404
|
syl |
|- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
406 |
|
eleq2 |
|- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( F ` X ) / ( G ` X ) ) e. u <-> ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
407 |
|
sseq2 |
|- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u <-> ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
408 |
407
|
anbi2d |
|- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) <-> ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
409 |
408
|
rexbidv |
|- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) <-> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
410 |
406 409
|
imbi12d |
|- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) <-> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) ) |
411 |
23
|
adantr |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` X ) e. CC ) |
412 |
4
|
ffvelrnda |
|- ( ( ph /\ z e. ( A (,) B ) ) -> ( F ` z ) e. RR ) |
413 |
137 412
|
syldan |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` z ) e. RR ) |
414 |
413
|
recnd |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` z ) e. CC ) |
415 |
411 414
|
subcld |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( F ` X ) - ( F ` z ) ) e. CC ) |
416 |
136 140
|
subcld |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) e. CC ) |
417 |
|
eldifsn |
|- ( ( ( G ` X ) - ( G ` z ) ) e. ( CC \ { 0 } ) <-> ( ( ( G ` X ) - ( G ` z ) ) e. CC /\ ( ( G ` X ) - ( G ` z ) ) =/= 0 ) ) |
418 |
416 225 417
|
sylanbrc |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) e. ( CC \ { 0 } ) ) |
419 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
420 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
421 |
420
|
a1i |
|- ( ph -> ( CC \ { 0 } ) C_ CC ) |
422 |
55
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
423 |
|
cnex |
|- CC e. _V |
424 |
423
|
difexi |
|- ( CC \ { 0 } ) e. _V |
425 |
|
txrest |
|- ( ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) /\ ( CC e. _V /\ ( CC \ { 0 } ) e. _V ) ) -> ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) |
426 |
422 422 423 424 425
|
mp4an |
|- ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) |
427 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
428 |
427
|
restid |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
429 |
422 428
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
430 |
429
|
oveq1i |
|- ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) = ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) |
431 |
426 430
|
eqtr2i |
|- ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) |
432 |
23
|
subid1d |
|- ( ph -> ( ( F ` X ) - 0 ) = ( F ` X ) ) |
433 |
|
txtopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) ) |
434 |
422 422 433
|
mp2an |
|- ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) |
435 |
434
|
toponrestid |
|- ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. CC ) ) |
436 |
|
limcresi |
|- ( ( z e. RR |-> ( F ` X ) ) limCC A ) C_ ( ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) limCC A ) |
437 |
|
ioossre |
|- ( A (,) X ) C_ RR |
438 |
|
resmpt |
|- ( ( A (,) X ) C_ RR -> ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` X ) ) ) |
439 |
437 438
|
ax-mp |
|- ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` X ) ) |
440 |
439
|
oveq1i |
|- ( ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A ) |
441 |
436 440
|
sseqtri |
|- ( ( z e. RR |-> ( F ` X ) ) limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A ) |
442 |
|
cncfmptc |
|- ( ( ( F ` X ) e. RR /\ RR C_ CC /\ RR C_ CC ) -> ( z e. RR |-> ( F ` X ) ) e. ( RR -cn-> RR ) ) |
443 |
22 160 160 442
|
syl3anc |
|- ( ph -> ( z e. RR |-> ( F ` X ) ) e. ( RR -cn-> RR ) ) |
444 |
|
eqidd |
|- ( z = A -> ( F ` X ) = ( F ` X ) ) |
445 |
443 1 444
|
cnmptlimc |
|- ( ph -> ( F ` X ) e. ( ( z e. RR |-> ( F ` X ) ) limCC A ) ) |
446 |
441 445
|
sselid |
|- ( ph -> ( F ` X ) e. ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A ) ) |
447 |
|
limcresi |
|- ( F limCC A ) C_ ( ( F |` ( A (,) X ) ) limCC A ) |
448 |
4 121
|
feqresmpt |
|- ( ph -> ( F |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` z ) ) ) |
449 |
448
|
oveq1d |
|- ( ph -> ( ( F |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) ) |
450 |
447 449
|
sseqtrid |
|- ( ph -> ( F limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) ) |
451 |
450 8
|
sseldd |
|- ( ph -> 0 e. ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) ) |
452 |
55
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
453 |
|
0cn |
|- 0 e. CC |
454 |
|
opelxpi |
|- ( ( ( F ` X ) e. CC /\ 0 e. CC ) -> <. ( F ` X ) , 0 >. e. ( CC X. CC ) ) |
455 |
23 453 454
|
sylancl |
|- ( ph -> <. ( F ` X ) , 0 >. e. ( CC X. CC ) ) |
456 |
434
|
toponunii |
|- ( CC X. CC ) = U. ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |
457 |
456
|
cncnpi |
|- ( ( - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( F ` X ) , 0 >. e. ( CC X. CC ) ) -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , 0 >. ) ) |
458 |
452 455 457
|
sylancr |
|- ( ph -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , 0 >. ) ) |
459 |
411 414 419 419 55 435 446 451 458
|
limccnp2 |
|- ( ph -> ( ( F ` X ) - 0 ) e. ( ( z e. ( A (,) X ) |-> ( ( F ` X ) - ( F ` z ) ) ) limCC A ) ) |
460 |
432 459
|
eqeltrrd |
|- ( ph -> ( F ` X ) e. ( ( z e. ( A (,) X ) |-> ( ( F ` X ) - ( F ` z ) ) ) limCC A ) ) |
461 |
25
|
subid1d |
|- ( ph -> ( ( G ` X ) - 0 ) = ( G ` X ) ) |
462 |
|
limcresi |
|- ( ( z e. RR |-> ( G ` X ) ) limCC A ) C_ ( ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) limCC A ) |
463 |
|
resmpt |
|- ( ( A (,) X ) C_ RR -> ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` X ) ) ) |
464 |
437 463
|
ax-mp |
|- ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` X ) ) |
465 |
464
|
oveq1i |
|- ( ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A ) |
466 |
462 465
|
sseqtri |
|- ( ( z e. RR |-> ( G ` X ) ) limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A ) |
467 |
|
cncfmptc |
|- ( ( ( G ` X ) e. RR /\ RR C_ CC /\ RR C_ CC ) -> ( z e. RR |-> ( G ` X ) ) e. ( RR -cn-> RR ) ) |
468 |
24 160 160 467
|
syl3anc |
|- ( ph -> ( z e. RR |-> ( G ` X ) ) e. ( RR -cn-> RR ) ) |
469 |
|
eqidd |
|- ( z = A -> ( G ` X ) = ( G ` X ) ) |
470 |
468 1 469
|
cnmptlimc |
|- ( ph -> ( G ` X ) e. ( ( z e. RR |-> ( G ` X ) ) limCC A ) ) |
471 |
466 470
|
sselid |
|- ( ph -> ( G ` X ) e. ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A ) ) |
472 |
|
limcresi |
|- ( G limCC A ) C_ ( ( G |` ( A (,) X ) ) limCC A ) |
473 |
5 121
|
feqresmpt |
|- ( ph -> ( G |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` z ) ) ) |
474 |
473
|
oveq1d |
|- ( ph -> ( ( G |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) ) |
475 |
472 474
|
sseqtrid |
|- ( ph -> ( G limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) ) |
476 |
475 9
|
sseldd |
|- ( ph -> 0 e. ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) ) |
477 |
|
opelxpi |
|- ( ( ( G ` X ) e. CC /\ 0 e. CC ) -> <. ( G ` X ) , 0 >. e. ( CC X. CC ) ) |
478 |
25 453 477
|
sylancl |
|- ( ph -> <. ( G ` X ) , 0 >. e. ( CC X. CC ) ) |
479 |
456
|
cncnpi |
|- ( ( - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( G ` X ) , 0 >. e. ( CC X. CC ) ) -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( G ` X ) , 0 >. ) ) |
480 |
452 478 479
|
sylancr |
|- ( ph -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( G ` X ) , 0 >. ) ) |
481 |
136 140 419 419 55 435 471 476 480
|
limccnp2 |
|- ( ph -> ( ( G ` X ) - 0 ) e. ( ( z e. ( A (,) X ) |-> ( ( G ` X ) - ( G ` z ) ) ) limCC A ) ) |
482 |
461 481
|
eqeltrrd |
|- ( ph -> ( G ` X ) e. ( ( z e. ( A (,) X ) |-> ( ( G ` X ) - ( G ` z ) ) ) limCC A ) ) |
483 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) |
484 |
55 483
|
divcn |
|- / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) |
485 |
|
eldifsn |
|- ( ( G ` X ) e. ( CC \ { 0 } ) <-> ( ( G ` X ) e. CC /\ ( G ` X ) =/= 0 ) ) |
486 |
25 32 485
|
sylanbrc |
|- ( ph -> ( G ` X ) e. ( CC \ { 0 } ) ) |
487 |
23 486
|
opelxpd |
|- ( ph -> <. ( F ` X ) , ( G ` X ) >. e. ( CC X. ( CC \ { 0 } ) ) ) |
488 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) |
489 |
422 420 488
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) |
490 |
|
txtopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) -> ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) e. ( TopOn ` ( CC X. ( CC \ { 0 } ) ) ) ) |
491 |
422 489 490
|
mp2an |
|- ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) e. ( TopOn ` ( CC X. ( CC \ { 0 } ) ) ) |
492 |
491
|
toponunii |
|- ( CC X. ( CC \ { 0 } ) ) = U. ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) |
493 |
492
|
cncnpi |
|- ( ( / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( F ` X ) , ( G ` X ) >. e. ( CC X. ( CC \ { 0 } ) ) ) -> / e. ( ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , ( G ` X ) >. ) ) |
494 |
484 487 493
|
sylancr |
|- ( ph -> / e. ( ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , ( G ` X ) >. ) ) |
495 |
415 418 419 421 55 431 460 482 494
|
limccnp2 |
|- ( ph -> ( ( F ` X ) / ( G ` X ) ) e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) limCC A ) ) |
496 |
415 416 225
|
divcld |
|- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) e. CC ) |
497 |
496
|
fmpttd |
|- ( ph -> ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) : ( A (,) X ) --> CC ) |
498 |
437 159
|
sstri |
|- ( A (,) X ) C_ CC |
499 |
498
|
a1i |
|- ( ph -> ( A (,) X ) C_ CC ) |
500 |
497 499 74 55
|
ellimc2 |
|- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) limCC A ) <-> ( ( ( F ` X ) / ( G ` X ) ) e. CC /\ A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) ) ) |
501 |
495 500
|
mpbid |
|- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. CC /\ A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) ) |
502 |
501
|
simprd |
|- ( ph -> A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) |
503 |
|
notrab |
|- ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } |
504 |
76
|
cnmetdval |
|- ( ( C e. CC /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( C - x ) ) ) |
505 |
|
abssub |
|- ( ( C e. CC /\ x e. CC ) -> ( abs ` ( C - x ) ) = ( abs ` ( x - C ) ) ) |
506 |
504 505
|
eqtrd |
|- ( ( C e. CC /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( x - C ) ) ) |
507 |
35 506
|
sylan |
|- ( ( ph /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( x - C ) ) ) |
508 |
507
|
breq1d |
|- ( ( ph /\ x e. CC ) -> ( ( C ( abs o. - ) x ) <_ E <-> ( abs ` ( x - C ) ) <_ E ) ) |
509 |
508
|
rabbidva |
|- ( ph -> { x e. CC | ( C ( abs o. - ) x ) <_ E } = { x e. CC | ( abs ` ( x - C ) ) <_ E } ) |
510 |
42
|
a1i |
|- ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) |
511 |
38
|
rexrd |
|- ( ph -> E e. RR* ) |
512 |
|
eqid |
|- { x e. CC | ( C ( abs o. - ) x ) <_ E } = { x e. CC | ( C ( abs o. - ) x ) <_ E } |
513 |
56 512
|
blcld |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ C e. CC /\ E e. RR* ) -> { x e. CC | ( C ( abs o. - ) x ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
514 |
510 35 511 513
|
syl3anc |
|- ( ph -> { x e. CC | ( C ( abs o. - ) x ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
515 |
509 514
|
eqeltrrd |
|- ( ph -> { x e. CC | ( abs ` ( x - C ) ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
516 |
427
|
cldopn |
|- ( { x e. CC | ( abs ` ( x - C ) ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) e. ( TopOpen ` CCfld ) ) |
517 |
515 516
|
syl |
|- ( ph -> ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) e. ( TopOpen ` CCfld ) ) |
518 |
503 517
|
eqeltrrid |
|- ( ph -> { x e. CC | -. ( abs ` ( x - C ) ) <_ E } e. ( TopOpen ` CCfld ) ) |
519 |
410 502 518
|
rspcdva |
|- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
520 |
405 519
|
sylbird |
|- ( ph -> ( -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
521 |
400 520
|
mt3d |
|- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) |
522 |
38
|
recnd |
|- ( ph -> E e. CC ) |
523 |
522
|
mulid2d |
|- ( ph -> ( 1 x. E ) = E ) |
524 |
|
1red |
|- ( ph -> 1 e. RR ) |
525 |
|
1lt2 |
|- 1 < 2 |
526 |
525
|
a1i |
|- ( ph -> 1 < 2 ) |
527 |
524 40 13 526
|
ltmul1dd |
|- ( ph -> ( 1 x. E ) < ( 2 x. E ) ) |
528 |
523 527
|
eqbrtrrd |
|- ( ph -> E < ( 2 x. E ) ) |
529 |
37 38 41 521 528
|
lelttrd |
|- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) < ( 2 x. E ) ) |