Metamath Proof Explorer


Theorem lhop1lem

Description: Lemma for lhop1 . (Contributed by Mario Carneiro, 29-Dec-2016)

Ref Expression
Hypotheses lhop1.a
|- ( ph -> A e. RR )
lhop1.b
|- ( ph -> B e. RR* )
lhop1.l
|- ( ph -> A < B )
lhop1.f
|- ( ph -> F : ( A (,) B ) --> RR )
lhop1.g
|- ( ph -> G : ( A (,) B ) --> RR )
lhop1.if
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) )
lhop1.ig
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) )
lhop1.f0
|- ( ph -> 0 e. ( F limCC A ) )
lhop1.g0
|- ( ph -> 0 e. ( G limCC A ) )
lhop1.gn0
|- ( ph -> -. 0 e. ran G )
lhop1.gd0
|- ( ph -> -. 0 e. ran ( RR _D G ) )
lhop1.c
|- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) )
lhop1lem.e
|- ( ph -> E e. RR+ )
lhop1lem.d
|- ( ph -> D e. RR )
lhop1lem.db
|- ( ph -> D <_ B )
lhop1lem.x
|- ( ph -> X e. ( A (,) D ) )
lhop1lem.t
|- ( ph -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E )
lhop1lem.r
|- R = ( A + ( r / 2 ) )
Assertion lhop1lem
|- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) < ( 2 x. E ) )

Proof

Step Hyp Ref Expression
1 lhop1.a
 |-  ( ph -> A e. RR )
2 lhop1.b
 |-  ( ph -> B e. RR* )
3 lhop1.l
 |-  ( ph -> A < B )
4 lhop1.f
 |-  ( ph -> F : ( A (,) B ) --> RR )
5 lhop1.g
 |-  ( ph -> G : ( A (,) B ) --> RR )
6 lhop1.if
 |-  ( ph -> dom ( RR _D F ) = ( A (,) B ) )
7 lhop1.ig
 |-  ( ph -> dom ( RR _D G ) = ( A (,) B ) )
8 lhop1.f0
 |-  ( ph -> 0 e. ( F limCC A ) )
9 lhop1.g0
 |-  ( ph -> 0 e. ( G limCC A ) )
10 lhop1.gn0
 |-  ( ph -> -. 0 e. ran G )
11 lhop1.gd0
 |-  ( ph -> -. 0 e. ran ( RR _D G ) )
12 lhop1.c
 |-  ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) )
13 lhop1lem.e
 |-  ( ph -> E e. RR+ )
14 lhop1lem.d
 |-  ( ph -> D e. RR )
15 lhop1lem.db
 |-  ( ph -> D <_ B )
16 lhop1lem.x
 |-  ( ph -> X e. ( A (,) D ) )
17 lhop1lem.t
 |-  ( ph -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E )
18 lhop1lem.r
 |-  R = ( A + ( r / 2 ) )
19 iooss2
 |-  ( ( B e. RR* /\ D <_ B ) -> ( A (,) D ) C_ ( A (,) B ) )
20 2 15 19 syl2anc
 |-  ( ph -> ( A (,) D ) C_ ( A (,) B ) )
21 20 16 sseldd
 |-  ( ph -> X e. ( A (,) B ) )
22 4 21 ffvelrnd
 |-  ( ph -> ( F ` X ) e. RR )
23 22 recnd
 |-  ( ph -> ( F ` X ) e. CC )
24 5 21 ffvelrnd
 |-  ( ph -> ( G ` X ) e. RR )
25 24 recnd
 |-  ( ph -> ( G ` X ) e. CC )
26 5 ffnd
 |-  ( ph -> G Fn ( A (,) B ) )
27 fnfvelrn
 |-  ( ( G Fn ( A (,) B ) /\ X e. ( A (,) B ) ) -> ( G ` X ) e. ran G )
28 26 21 27 syl2anc
 |-  ( ph -> ( G ` X ) e. ran G )
29 eleq1
 |-  ( ( G ` X ) = 0 -> ( ( G ` X ) e. ran G <-> 0 e. ran G ) )
30 28 29 syl5ibcom
 |-  ( ph -> ( ( G ` X ) = 0 -> 0 e. ran G ) )
31 30 necon3bd
 |-  ( ph -> ( -. 0 e. ran G -> ( G ` X ) =/= 0 ) )
32 10 31 mpd
 |-  ( ph -> ( G ` X ) =/= 0 )
33 23 25 32 divcld
 |-  ( ph -> ( ( F ` X ) / ( G ` X ) ) e. CC )
34 limccl
 |-  ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) C_ CC
35 34 12 sselid
 |-  ( ph -> C e. CC )
36 33 35 subcld
 |-  ( ph -> ( ( ( F ` X ) / ( G ` X ) ) - C ) e. CC )
37 36 abscld
 |-  ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) e. RR )
38 13 rpred
 |-  ( ph -> E e. RR )
39 2re
 |-  2 e. RR
40 39 a1i
 |-  ( ph -> 2 e. RR )
41 40 38 remulcld
 |-  ( ph -> ( 2 x. E ) e. RR )
42 cnxmet
 |-  ( abs o. - ) e. ( *Met ` CC )
43 42 a1i
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( abs o. - ) e. ( *Met ` CC ) )
44 simprl
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> v e. ( TopOpen ` CCfld ) )
45 simprr
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> A e. v )
46 eliooord
 |-  ( X e. ( A (,) D ) -> ( A < X /\ X < D ) )
47 16 46 syl
 |-  ( ph -> ( A < X /\ X < D ) )
48 47 simpld
 |-  ( ph -> A < X )
49 ioossre
 |-  ( A (,) D ) C_ RR
50 49 16 sselid
 |-  ( ph -> X e. RR )
51 difrp
 |-  ( ( A e. RR /\ X e. RR ) -> ( A < X <-> ( X - A ) e. RR+ ) )
52 1 50 51 syl2anc
 |-  ( ph -> ( A < X <-> ( X - A ) e. RR+ ) )
53 48 52 mpbid
 |-  ( ph -> ( X - A ) e. RR+ )
54 53 adantr
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( X - A ) e. RR+ )
55 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
56 55 cnfldtopn
 |-  ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) )
57 56 mopni3
 |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ v e. ( TopOpen ` CCfld ) /\ A e. v ) /\ ( X - A ) e. RR+ ) -> E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) )
58 43 44 45 54 57 syl31anc
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) )
59 ssrin
 |-  ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( A (,) X ) ) )
60 lbioo
 |-  -. A e. ( A (,) X )
61 disjsn
 |-  ( ( ( A (,) X ) i^i { A } ) = (/) <-> -. A e. ( A (,) X ) )
62 60 61 mpbir
 |-  ( ( A (,) X ) i^i { A } ) = (/)
63 disj3
 |-  ( ( ( A (,) X ) i^i { A } ) = (/) <-> ( A (,) X ) = ( ( A (,) X ) \ { A } ) )
64 62 63 mpbi
 |-  ( A (,) X ) = ( ( A (,) X ) \ { A } )
65 64 ineq2i
 |-  ( v i^i ( A (,) X ) ) = ( v i^i ( ( A (,) X ) \ { A } ) )
66 59 65 sseqtrdi
 |-  ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( ( A (,) X ) \ { A } ) ) )
67 1 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. RR )
68 simprl
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR+ )
69 68 rpred
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR )
70 69 rehalfcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR )
71 67 70 readdcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A + ( r / 2 ) ) e. RR )
72 18 71 eqeltrid
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. RR )
73 72 recnd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. CC )
74 1 recnd
 |-  ( ph -> A e. CC )
75 74 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. CC )
76 eqid
 |-  ( abs o. - ) = ( abs o. - )
77 76 cnmetdval
 |-  ( ( R e. CC /\ A e. CC ) -> ( R ( abs o. - ) A ) = ( abs ` ( R - A ) ) )
78 73 75 77 syl2anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) = ( abs ` ( R - A ) ) )
79 18 oveq1i
 |-  ( R - A ) = ( ( A + ( r / 2 ) ) - A )
80 69 recnd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. CC )
81 80 halfcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. CC )
82 75 81 pncan2d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A + ( r / 2 ) ) - A ) = ( r / 2 ) )
83 79 82 syl5eq
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R - A ) = ( r / 2 ) )
84 83 fveq2d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( R - A ) ) = ( abs ` ( r / 2 ) ) )
85 68 rphalfcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR+ )
86 85 rpred
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR )
87 85 rpge0d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> 0 <_ ( r / 2 ) )
88 86 87 absidd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( r / 2 ) ) = ( r / 2 ) )
89 78 84 88 3eqtrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) = ( r / 2 ) )
90 rphalflt
 |-  ( r e. RR+ -> ( r / 2 ) < r )
91 68 90 syl
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) < r )
92 89 91 eqbrtrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) < r )
93 42 a1i
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs o. - ) e. ( *Met ` CC ) )
94 69 rexrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR* )
95 elbl3
 |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( A e. CC /\ R e. CC ) ) -> ( R e. ( A ( ball ` ( abs o. - ) ) r ) <-> ( R ( abs o. - ) A ) < r ) )
96 93 94 75 73 95 syl22anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R e. ( A ( ball ` ( abs o. - ) ) r ) <-> ( R ( abs o. - ) A ) < r ) )
97 92 96 mpbird
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A ( ball ` ( abs o. - ) ) r ) )
98 67 85 ltaddrpd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A < ( A + ( r / 2 ) ) )
99 98 18 breqtrrdi
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A < R )
100 50 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X e. RR )
101 100 67 resubcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( X - A ) e. RR )
102 simprr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r < ( X - A ) )
103 86 69 101 91 102 lttrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) < ( X - A ) )
104 67 86 100 ltaddsub2d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A + ( r / 2 ) ) < X <-> ( r / 2 ) < ( X - A ) ) )
105 103 104 mpbird
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A + ( r / 2 ) ) < X )
106 18 105 eqbrtrid
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R < X )
107 67 rexrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. RR* )
108 50 rexrd
 |-  ( ph -> X e. RR* )
109 108 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X e. RR* )
110 elioo2
 |-  ( ( A e. RR* /\ X e. RR* ) -> ( R e. ( A (,) X ) <-> ( R e. RR /\ A < R /\ R < X ) ) )
111 107 109 110 syl2anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R e. ( A (,) X ) <-> ( R e. RR /\ A < R /\ R < X ) ) )
112 72 99 106 111 mpbir3and
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A (,) X ) )
113 97 112 elind
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) )
114 23 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` X ) e. CC )
115 4 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F : ( A (,) B ) --> RR )
116 14 rexrd
 |-  ( ph -> D e. RR* )
117 47 simprd
 |-  ( ph -> X < D )
118 50 14 117 ltled
 |-  ( ph -> X <_ D )
119 108 116 2 118 15 xrletrd
 |-  ( ph -> X <_ B )
120 iooss2
 |-  ( ( B e. RR* /\ X <_ B ) -> ( A (,) X ) C_ ( A (,) B ) )
121 2 119 120 syl2anc
 |-  ( ph -> ( A (,) X ) C_ ( A (,) B ) )
122 121 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) X ) C_ ( A (,) B ) )
123 122 112 sseldd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A (,) B ) )
124 115 123 ffvelrnd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` R ) e. RR )
125 124 recnd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` R ) e. CC )
126 114 125 subcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( F ` X ) - ( F ` R ) ) e. CC )
127 25 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` X ) e. CC )
128 5 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G : ( A (,) B ) --> RR )
129 128 123 ffvelrnd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` R ) e. RR )
130 129 recnd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` R ) e. CC )
131 127 130 subcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( G ` X ) - ( G ` R ) ) e. CC )
132 fveq2
 |-  ( z = R -> ( G ` z ) = ( G ` R ) )
133 132 oveq2d
 |-  ( z = R -> ( ( G ` X ) - ( G ` z ) ) = ( ( G ` X ) - ( G ` R ) ) )
134 133 neeq1d
 |-  ( z = R -> ( ( ( G ` X ) - ( G ` z ) ) =/= 0 <-> ( ( G ` X ) - ( G ` R ) ) =/= 0 ) )
135 11 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> -. 0 e. ran ( RR _D G ) )
136 25 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` X ) e. CC )
137 121 sselda
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> z e. ( A (,) B ) )
138 5 ffvelrnda
 |-  ( ( ph /\ z e. ( A (,) B ) ) -> ( G ` z ) e. RR )
139 137 138 syldan
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` z ) e. RR )
140 139 recnd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` z ) e. CC )
141 136 140 subeq0ad
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G ` X ) - ( G ` z ) ) = 0 <-> ( G ` X ) = ( G ` z ) ) )
142 ioossre
 |-  ( A (,) B ) C_ RR
143 142 137 sselid
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> z e. RR )
144 143 adantr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> z e. RR )
145 50 ad2antrr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> X e. RR )
146 eliooord
 |-  ( z e. ( A (,) X ) -> ( A < z /\ z < X ) )
147 146 adantl
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( A < z /\ z < X ) )
148 147 simprd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> z < X )
149 148 adantr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> z < X )
150 1 rexrd
 |-  ( ph -> A e. RR* )
151 150 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> A e. RR* )
152 2 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> B e. RR* )
153 147 simpld
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> A < z )
154 108 116 2 117 15 xrltletrd
 |-  ( ph -> X < B )
155 154 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> X < B )
156 iccssioo
 |-  ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < z /\ X < B ) ) -> ( z [,] X ) C_ ( A (,) B ) )
157 151 152 153 155 156 syl22anc
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( z [,] X ) C_ ( A (,) B ) )
158 157 adantr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z [,] X ) C_ ( A (,) B ) )
159 ax-resscn
 |-  RR C_ CC
160 159 a1i
 |-  ( ph -> RR C_ CC )
161 fss
 |-  ( ( G : ( A (,) B ) --> RR /\ RR C_ CC ) -> G : ( A (,) B ) --> CC )
162 5 159 161 sylancl
 |-  ( ph -> G : ( A (,) B ) --> CC )
163 142 a1i
 |-  ( ph -> ( A (,) B ) C_ RR )
164 dvcn
 |-  ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D G ) = ( A (,) B ) ) -> G e. ( ( A (,) B ) -cn-> CC ) )
165 160 162 163 7 164 syl31anc
 |-  ( ph -> G e. ( ( A (,) B ) -cn-> CC ) )
166 cncffvrn
 |-  ( ( RR C_ CC /\ G e. ( ( A (,) B ) -cn-> CC ) ) -> ( G e. ( ( A (,) B ) -cn-> RR ) <-> G : ( A (,) B ) --> RR ) )
167 159 165 166 sylancr
 |-  ( ph -> ( G e. ( ( A (,) B ) -cn-> RR ) <-> G : ( A (,) B ) --> RR ) )
168 5 167 mpbird
 |-  ( ph -> G e. ( ( A (,) B ) -cn-> RR ) )
169 168 ad2antrr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> G e. ( ( A (,) B ) -cn-> RR ) )
170 rescncf
 |-  ( ( z [,] X ) C_ ( A (,) B ) -> ( G e. ( ( A (,) B ) -cn-> RR ) -> ( G |` ( z [,] X ) ) e. ( ( z [,] X ) -cn-> RR ) ) )
171 158 169 170 sylc
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( G |` ( z [,] X ) ) e. ( ( z [,] X ) -cn-> RR ) )
172 159 a1i
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> RR C_ CC )
173 162 ad2antrr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> G : ( A (,) B ) --> CC )
174 142 a1i
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( A (,) B ) C_ RR )
175 158 142 sstrdi
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z [,] X ) C_ RR )
176 55 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
177 55 176 dvres
 |-  ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( z [,] X ) C_ RR ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) )
178 172 173 174 175 177 syl22anc
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) )
179 iccntr
 |-  ( ( z e. RR /\ X e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) = ( z (,) X ) )
180 144 145 179 syl2anc
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) = ( z (,) X ) )
181 180 reseq2d
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( z (,) X ) ) )
182 178 181 eqtrd
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( z (,) X ) ) )
183 182 dmeqd
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D ( G |` ( z [,] X ) ) ) = dom ( ( RR _D G ) |` ( z (,) X ) ) )
184 ioossicc
 |-  ( z (,) X ) C_ ( z [,] X )
185 184 158 sstrid
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z (,) X ) C_ ( A (,) B ) )
186 7 ad2antrr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D G ) = ( A (,) B ) )
187 185 186 sseqtrrd
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z (,) X ) C_ dom ( RR _D G ) )
188 ssdmres
 |-  ( ( z (,) X ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( z (,) X ) ) = ( z (,) X ) )
189 187 188 sylib
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( ( RR _D G ) |` ( z (,) X ) ) = ( z (,) X ) )
190 183 189 eqtrd
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D ( G |` ( z [,] X ) ) ) = ( z (,) X ) )
191 143 rexrd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> z e. RR* )
192 108 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> X e. RR* )
193 50 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> X e. RR )
194 143 193 148 ltled
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> z <_ X )
195 ubicc2
 |-  ( ( z e. RR* /\ X e. RR* /\ z <_ X ) -> X e. ( z [,] X ) )
196 191 192 194 195 syl3anc
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> X e. ( z [,] X ) )
197 196 fvresd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G |` ( z [,] X ) ) ` X ) = ( G ` X ) )
198 lbicc2
 |-  ( ( z e. RR* /\ X e. RR* /\ z <_ X ) -> z e. ( z [,] X ) )
199 191 192 194 198 syl3anc
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> z e. ( z [,] X ) )
200 199 fvresd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G |` ( z [,] X ) ) ` z ) = ( G ` z ) )
201 197 200 eqeq12d
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G |` ( z [,] X ) ) ` X ) = ( ( G |` ( z [,] X ) ) ` z ) <-> ( G ` X ) = ( G ` z ) ) )
202 201 biimpar
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( G |` ( z [,] X ) ) ` X ) = ( ( G |` ( z [,] X ) ) ` z ) )
203 202 eqcomd
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( G |` ( z [,] X ) ) ` z ) = ( ( G |` ( z [,] X ) ) ` X ) )
204 144 145 149 171 190 203 rolle
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> E. w e. ( z (,) X ) ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 )
205 182 fveq1d
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = ( ( ( RR _D G ) |` ( z (,) X ) ) ` w ) )
206 fvres
 |-  ( w e. ( z (,) X ) -> ( ( ( RR _D G ) |` ( z (,) X ) ) ` w ) = ( ( RR _D G ) ` w ) )
207 205 206 sylan9eq
 |-  ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = ( ( RR _D G ) ` w ) )
208 dvf
 |-  ( RR _D G ) : dom ( RR _D G ) --> CC
209 7 feq2d
 |-  ( ph -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) )
210 208 209 mpbii
 |-  ( ph -> ( RR _D G ) : ( A (,) B ) --> CC )
211 210 ad2antrr
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D G ) : ( A (,) B ) --> CC )
212 211 ffnd
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D G ) Fn ( A (,) B ) )
213 212 adantr
 |-  ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( RR _D G ) Fn ( A (,) B ) )
214 185 sselda
 |-  ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> w e. ( A (,) B ) )
215 fnfvelrn
 |-  ( ( ( RR _D G ) Fn ( A (,) B ) /\ w e. ( A (,) B ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) )
216 213 214 215 syl2anc
 |-  ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) )
217 207 216 eqeltrd
 |-  ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) e. ran ( RR _D G ) )
218 eleq1
 |-  ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) )
219 217 218 syl5ibcom
 |-  ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) )
220 219 rexlimdva
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( E. w e. ( z (,) X ) ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) )
221 204 220 mpd
 |-  ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> 0 e. ran ( RR _D G ) )
222 221 ex
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) = ( G ` z ) -> 0 e. ran ( RR _D G ) ) )
223 141 222 sylbid
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G ` X ) - ( G ` z ) ) = 0 -> 0 e. ran ( RR _D G ) ) )
224 223 necon3bd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( G ` X ) - ( G ` z ) ) =/= 0 ) )
225 135 224 mpd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) =/= 0 )
226 225 ralrimiva
 |-  ( ph -> A. z e. ( A (,) X ) ( ( G ` X ) - ( G ` z ) ) =/= 0 )
227 226 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A. z e. ( A (,) X ) ( ( G ` X ) - ( G ` z ) ) =/= 0 )
228 134 227 112 rspcdva
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( G ` X ) - ( G ` R ) ) =/= 0 )
229 126 131 228 divcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) e. CC )
230 35 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> C e. CC )
231 229 230 subcld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) e. CC )
232 231 abscld
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) e. RR )
233 38 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E e. RR )
234 116 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> D e. RR* )
235 117 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X < D )
236 iccssioo
 |-  ( ( ( A e. RR* /\ D e. RR* ) /\ ( A < R /\ X < D ) ) -> ( R [,] X ) C_ ( A (,) D ) )
237 107 234 99 235 236 syl22anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ ( A (,) D ) )
238 20 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) D ) C_ ( A (,) B ) )
239 237 238 sstrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ ( A (,) B ) )
240 fss
 |-  ( ( F : ( A (,) B ) --> RR /\ RR C_ CC ) -> F : ( A (,) B ) --> CC )
241 4 159 240 sylancl
 |-  ( ph -> F : ( A (,) B ) --> CC )
242 dvcn
 |-  ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D F ) = ( A (,) B ) ) -> F e. ( ( A (,) B ) -cn-> CC ) )
243 160 241 163 6 242 syl31anc
 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )
244 cncffvrn
 |-  ( ( RR C_ CC /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) )
245 159 243 244 sylancr
 |-  ( ph -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) )
246 4 245 mpbird
 |-  ( ph -> F e. ( ( A (,) B ) -cn-> RR ) )
247 246 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F e. ( ( A (,) B ) -cn-> RR ) )
248 rescncf
 |-  ( ( R [,] X ) C_ ( A (,) B ) -> ( F e. ( ( A (,) B ) -cn-> RR ) -> ( F |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) )
249 239 247 248 sylc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) )
250 168 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G e. ( ( A (,) B ) -cn-> RR ) )
251 rescncf
 |-  ( ( R [,] X ) C_ ( A (,) B ) -> ( G e. ( ( A (,) B ) -cn-> RR ) -> ( G |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) )
252 239 250 251 sylc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) )
253 159 a1i
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> RR C_ CC )
254 241 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F : ( A (,) B ) --> CC )
255 142 a1i
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) B ) C_ RR )
256 iccssre
 |-  ( ( R e. RR /\ X e. RR ) -> ( R [,] X ) C_ RR )
257 72 100 256 syl2anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ RR )
258 55 176 dvres
 |-  ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( R [,] X ) C_ RR ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) )
259 253 254 255 257 258 syl22anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) )
260 iccntr
 |-  ( ( R e. RR /\ X e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) = ( R (,) X ) )
261 72 100 260 syl2anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) = ( R (,) X ) )
262 261 reseq2d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( R (,) X ) ) )
263 259 262 eqtrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( R (,) X ) ) )
264 263 dmeqd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( F |` ( R [,] X ) ) ) = dom ( ( RR _D F ) |` ( R (,) X ) ) )
265 67 72 99 ltled
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A <_ R )
266 iooss1
 |-  ( ( A e. RR* /\ A <_ R ) -> ( R (,) X ) C_ ( A (,) X ) )
267 107 265 266 syl2anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) X ) )
268 118 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X <_ D )
269 iooss2
 |-  ( ( D e. RR* /\ X <_ D ) -> ( A (,) X ) C_ ( A (,) D ) )
270 234 268 269 syl2anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) X ) C_ ( A (,) D ) )
271 267 270 sstrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) D ) )
272 271 238 sstrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) B ) )
273 6 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D F ) = ( A (,) B ) )
274 272 273 sseqtrrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ dom ( RR _D F ) )
275 ssdmres
 |-  ( ( R (,) X ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( R (,) X ) ) = ( R (,) X ) )
276 274 275 sylib
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( ( RR _D F ) |` ( R (,) X ) ) = ( R (,) X ) )
277 264 276 eqtrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( F |` ( R [,] X ) ) ) = ( R (,) X ) )
278 162 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G : ( A (,) B ) --> CC )
279 55 176 dvres
 |-  ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( R [,] X ) C_ RR ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) )
280 253 278 255 257 279 syl22anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) )
281 261 reseq2d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( R (,) X ) ) )
282 280 281 eqtrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( R (,) X ) ) )
283 282 dmeqd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( G |` ( R [,] X ) ) ) = dom ( ( RR _D G ) |` ( R (,) X ) ) )
284 7 adantr
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D G ) = ( A (,) B ) )
285 272 284 sseqtrrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ dom ( RR _D G ) )
286 ssdmres
 |-  ( ( R (,) X ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( R (,) X ) ) = ( R (,) X ) )
287 285 286 sylib
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( ( RR _D G ) |` ( R (,) X ) ) = ( R (,) X ) )
288 283 287 eqtrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( G |` ( R [,] X ) ) ) = ( R (,) X ) )
289 72 100 106 249 252 277 288 cmvth
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. w e. ( R (,) X ) ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) )
290 72 rexrd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. RR* )
291 290 adantr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R e. RR* )
292 108 ad2antrr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> X e. RR* )
293 72 100 106 ltled
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R <_ X )
294 293 adantr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R <_ X )
295 ubicc2
 |-  ( ( R e. RR* /\ X e. RR* /\ R <_ X ) -> X e. ( R [,] X ) )
296 291 292 294 295 syl3anc
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> X e. ( R [,] X ) )
297 296 fvresd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F |` ( R [,] X ) ) ` X ) = ( F ` X ) )
298 lbicc2
 |-  ( ( R e. RR* /\ X e. RR* /\ R <_ X ) -> R e. ( R [,] X ) )
299 291 292 294 298 syl3anc
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R e. ( R [,] X ) )
300 299 fvresd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F |` ( R [,] X ) ) ` R ) = ( F ` R ) )
301 297 300 oveq12d
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) = ( ( F ` X ) - ( F ` R ) ) )
302 282 fveq1d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) = ( ( ( RR _D G ) |` ( R (,) X ) ) ` w ) )
303 fvres
 |-  ( w e. ( R (,) X ) -> ( ( ( RR _D G ) |` ( R (,) X ) ) ` w ) = ( ( RR _D G ) ` w ) )
304 302 303 sylan9eq
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) = ( ( RR _D G ) ` w ) )
305 301 304 oveq12d
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) )
306 296 fvresd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G |` ( R [,] X ) ) ` X ) = ( G ` X ) )
307 299 fvresd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G |` ( R [,] X ) ) ` R ) = ( G ` R ) )
308 306 307 oveq12d
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) = ( ( G ` X ) - ( G ` R ) ) )
309 263 fveq1d
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) = ( ( ( RR _D F ) |` ( R (,) X ) ) ` w ) )
310 fvres
 |-  ( w e. ( R (,) X ) -> ( ( ( RR _D F ) |` ( R (,) X ) ) ` w ) = ( ( RR _D F ) ` w ) )
311 309 310 sylan9eq
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) = ( ( RR _D F ) ` w ) )
312 308 311 oveq12d
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) = ( ( ( G ` X ) - ( G ` R ) ) x. ( ( RR _D F ) ` w ) ) )
313 131 adantr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G ` X ) - ( G ` R ) ) e. CC )
314 dvf
 |-  ( RR _D F ) : dom ( RR _D F ) --> CC
315 6 feq2d
 |-  ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) )
316 314 315 mpbii
 |-  ( ph -> ( RR _D F ) : ( A (,) B ) --> CC )
317 316 ad2antrr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D F ) : ( A (,) B ) --> CC )
318 272 sselda
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> w e. ( A (,) B ) )
319 317 318 ffvelrnd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D F ) ` w ) e. CC )
320 313 319 mulcomd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( G ` X ) - ( G ` R ) ) x. ( ( RR _D F ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) )
321 312 320 eqtrd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) )
322 305 321 eqeq12d
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) )
323 126 adantr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F ` X ) - ( F ` R ) ) e. CC )
324 210 ad2antrr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D G ) : ( A (,) B ) --> CC )
325 324 318 ffvelrnd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) e. CC )
326 228 adantr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G ` X ) - ( G ` R ) ) =/= 0 )
327 11 ad2antrr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> -. 0 e. ran ( RR _D G ) )
328 324 ffnd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D G ) Fn ( A (,) B ) )
329 328 318 215 syl2anc
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) )
330 eleq1
 |-  ( ( ( RR _D G ) ` w ) = 0 -> ( ( ( RR _D G ) ` w ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) )
331 329 330 syl5ibcom
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( RR _D G ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) )
332 331 necon3bd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( RR _D G ) ` w ) =/= 0 ) )
333 327 332 mpd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) =/= 0 )
334 323 313 319 325 326 333 divmuleqd
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) )
335 322 334 bitr4d
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) )
336 335 rexbidva
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( E. w e. ( R (,) X ) ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) )
337 289 336 mpbid
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) )
338 fveq2
 |-  ( t = w -> ( ( RR _D F ) ` t ) = ( ( RR _D F ) ` w ) )
339 fveq2
 |-  ( t = w -> ( ( RR _D G ) ` t ) = ( ( RR _D G ) ` w ) )
340 338 339 oveq12d
 |-  ( t = w -> ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) )
341 340 fvoveq1d
 |-  ( t = w -> ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) = ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) )
342 341 breq1d
 |-  ( t = w -> ( ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E <-> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) )
343 17 ad2antrr
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E )
344 271 sselda
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> w e. ( A (,) D ) )
345 342 343 344 rspcdva
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E )
346 fvoveq1
 |-  ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) = ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) )
347 346 breq1d
 |-  ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E <-> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) )
348 345 347 syl5ibrcom
 |-  ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) )
349 348 rexlimdva
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) )
350 337 349 mpd
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E )
351 232 233 350 ltled
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E )
352 fveq2
 |-  ( u = R -> ( F ` u ) = ( F ` R ) )
353 352 oveq2d
 |-  ( u = R -> ( ( F ` X ) - ( F ` u ) ) = ( ( F ` X ) - ( F ` R ) ) )
354 fveq2
 |-  ( u = R -> ( G ` u ) = ( G ` R ) )
355 354 oveq2d
 |-  ( u = R -> ( ( G ` X ) - ( G ` u ) ) = ( ( G ` X ) - ( G ` R ) ) )
356 353 355 oveq12d
 |-  ( u = R -> ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) = ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) )
357 356 fvoveq1d
 |-  ( u = R -> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) = ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) )
358 357 breq1d
 |-  ( u = R -> ( ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) )
359 358 rspcev
 |-  ( ( R e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) /\ ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E )
360 113 351 359 syl2anc
 |-  ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E )
361 360 adantlr
 |-  ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E )
362 ssrexv
 |-  ( ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( ( A (,) X ) \ { A } ) ) -> ( E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) )
363 66 361 362 syl2imc
 |-  ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) )
364 363 anassrs
 |-  ( ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ r e. RR+ ) /\ r < ( X - A ) ) -> ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) )
365 364 expimpd
 |-  ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ r e. RR+ ) -> ( ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) )
366 365 rexlimdva
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) )
367 58 366 mpd
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E )
368 inss2
 |-  ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( ( A (,) X ) \ { A } )
369 difss
 |-  ( ( A (,) X ) \ { A } ) C_ ( A (,) X )
370 368 369 sstri
 |-  ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( A (,) X )
371 370 sseli
 |-  ( u e. ( v i^i ( ( A (,) X ) \ { A } ) ) -> u e. ( A (,) X ) )
372 fveq2
 |-  ( z = u -> ( F ` z ) = ( F ` u ) )
373 372 oveq2d
 |-  ( z = u -> ( ( F ` X ) - ( F ` z ) ) = ( ( F ` X ) - ( F ` u ) ) )
374 fveq2
 |-  ( z = u -> ( G ` z ) = ( G ` u ) )
375 374 oveq2d
 |-  ( z = u -> ( ( G ` X ) - ( G ` z ) ) = ( ( G ` X ) - ( G ` u ) ) )
376 373 375 oveq12d
 |-  ( z = u -> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) = ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) )
377 eqid
 |-  ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) = ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) )
378 ovex
 |-  ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) e. _V
379 376 377 378 fvmpt
 |-  ( u e. ( A (,) X ) -> ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) = ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) )
380 379 fvoveq1d
 |-  ( u e. ( A (,) X ) -> ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) = ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) )
381 380 breq1d
 |-  ( u e. ( A (,) X ) -> ( ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) )
382 371 381 syl
 |-  ( u e. ( v i^i ( ( A (,) X ) \ { A } ) ) -> ( ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) )
383 382 rexbiia
 |-  ( E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E )
384 367 383 sylibr
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E )
385 ovex
 |-  ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) e. _V
386 385 377 fnmpti
 |-  ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) Fn ( A (,) X )
387 fvoveq1
 |-  ( x = ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) -> ( abs ` ( x - C ) ) = ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) )
388 387 breq1d
 |-  ( x = ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) -> ( ( abs ` ( x - C ) ) <_ E <-> ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) )
389 388 rexima
 |-  ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) Fn ( A (,) X ) /\ ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( A (,) X ) ) -> ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) )
390 386 370 389 mp2an
 |-  ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E )
391 384 390 sylibr
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E )
392 dfrex2
 |-  ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> -. A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E )
393 391 392 sylib
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> -. A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E )
394 ssrab
 |-  ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ CC /\ A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) )
395 394 simprbi
 |-  ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E )
396 393 395 nsyl
 |-  ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } )
397 396 expr
 |-  ( ( ph /\ v e. ( TopOpen ` CCfld ) ) -> ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) )
398 397 ralrimiva
 |-  ( ph -> A. v e. ( TopOpen ` CCfld ) ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) )
399 ralinexa
 |-  ( A. v e. ( TopOpen ` CCfld ) ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) <-> -. E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) )
400 398 399 sylib
 |-  ( ph -> -. E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) )
401 fvoveq1
 |-  ( x = ( ( F ` X ) / ( G ` X ) ) -> ( abs ` ( x - C ) ) = ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) )
402 401 breq1d
 |-  ( x = ( ( F ` X ) / ( G ` X ) ) -> ( ( abs ` ( x - C ) ) <_ E <-> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) )
403 402 notbid
 |-  ( x = ( ( F ` X ) / ( G ` X ) ) -> ( -. ( abs ` ( x - C ) ) <_ E <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) )
404 403 elrab3
 |-  ( ( ( F ` X ) / ( G ` X ) ) e. CC -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) )
405 33 404 syl
 |-  ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) )
406 eleq2
 |-  ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( F ` X ) / ( G ` X ) ) e. u <-> ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) )
407 sseq2
 |-  ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u <-> ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) )
408 407 anbi2d
 |-  ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) <-> ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) )
409 408 rexbidv
 |-  ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) <-> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) )
410 406 409 imbi12d
 |-  ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) <-> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) )
411 23 adantr
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` X ) e. CC )
412 4 ffvelrnda
 |-  ( ( ph /\ z e. ( A (,) B ) ) -> ( F ` z ) e. RR )
413 137 412 syldan
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` z ) e. RR )
414 413 recnd
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` z ) e. CC )
415 411 414 subcld
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( F ` X ) - ( F ` z ) ) e. CC )
416 136 140 subcld
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) e. CC )
417 eldifsn
 |-  ( ( ( G ` X ) - ( G ` z ) ) e. ( CC \ { 0 } ) <-> ( ( ( G ` X ) - ( G ` z ) ) e. CC /\ ( ( G ` X ) - ( G ` z ) ) =/= 0 ) )
418 416 225 417 sylanbrc
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) e. ( CC \ { 0 } ) )
419 ssidd
 |-  ( ph -> CC C_ CC )
420 difss
 |-  ( CC \ { 0 } ) C_ CC
421 420 a1i
 |-  ( ph -> ( CC \ { 0 } ) C_ CC )
422 55 cnfldtopon
 |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC )
423 cnex
 |-  CC e. _V
424 423 difexi
 |-  ( CC \ { 0 } ) e. _V
425 txrest
 |-  ( ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) /\ ( CC e. _V /\ ( CC \ { 0 } ) e. _V ) ) -> ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) )
426 422 422 423 424 425 mp4an
 |-  ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) )
427 unicntop
 |-  CC = U. ( TopOpen ` CCfld )
428 427 restid
 |-  ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) )
429 422 428 ax-mp
 |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld )
430 429 oveq1i
 |-  ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) = ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) )
431 426 430 eqtr2i
 |-  ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) )
432 23 subid1d
 |-  ( ph -> ( ( F ` X ) - 0 ) = ( F ` X ) )
433 txtopon
 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) )
434 422 422 433 mp2an
 |-  ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) )
435 434 toponrestid
 |-  ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. CC ) )
436 limcresi
 |-  ( ( z e. RR |-> ( F ` X ) ) limCC A ) C_ ( ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) limCC A )
437 ioossre
 |-  ( A (,) X ) C_ RR
438 resmpt
 |-  ( ( A (,) X ) C_ RR -> ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` X ) ) )
439 437 438 ax-mp
 |-  ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` X ) )
440 439 oveq1i
 |-  ( ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A )
441 436 440 sseqtri
 |-  ( ( z e. RR |-> ( F ` X ) ) limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A )
442 cncfmptc
 |-  ( ( ( F ` X ) e. RR /\ RR C_ CC /\ RR C_ CC ) -> ( z e. RR |-> ( F ` X ) ) e. ( RR -cn-> RR ) )
443 22 160 160 442 syl3anc
 |-  ( ph -> ( z e. RR |-> ( F ` X ) ) e. ( RR -cn-> RR ) )
444 eqidd
 |-  ( z = A -> ( F ` X ) = ( F ` X ) )
445 443 1 444 cnmptlimc
 |-  ( ph -> ( F ` X ) e. ( ( z e. RR |-> ( F ` X ) ) limCC A ) )
446 441 445 sselid
 |-  ( ph -> ( F ` X ) e. ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A ) )
447 limcresi
 |-  ( F limCC A ) C_ ( ( F |` ( A (,) X ) ) limCC A )
448 4 121 feqresmpt
 |-  ( ph -> ( F |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` z ) ) )
449 448 oveq1d
 |-  ( ph -> ( ( F |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) )
450 447 449 sseqtrid
 |-  ( ph -> ( F limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) )
451 450 8 sseldd
 |-  ( ph -> 0 e. ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) )
452 55 subcn
 |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) )
453 0cn
 |-  0 e. CC
454 opelxpi
 |-  ( ( ( F ` X ) e. CC /\ 0 e. CC ) -> <. ( F ` X ) , 0 >. e. ( CC X. CC ) )
455 23 453 454 sylancl
 |-  ( ph -> <. ( F ` X ) , 0 >. e. ( CC X. CC ) )
456 434 toponunii
 |-  ( CC X. CC ) = U. ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) )
457 456 cncnpi
 |-  ( ( - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( F ` X ) , 0 >. e. ( CC X. CC ) ) -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , 0 >. ) )
458 452 455 457 sylancr
 |-  ( ph -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , 0 >. ) )
459 411 414 419 419 55 435 446 451 458 limccnp2
 |-  ( ph -> ( ( F ` X ) - 0 ) e. ( ( z e. ( A (,) X ) |-> ( ( F ` X ) - ( F ` z ) ) ) limCC A ) )
460 432 459 eqeltrrd
 |-  ( ph -> ( F ` X ) e. ( ( z e. ( A (,) X ) |-> ( ( F ` X ) - ( F ` z ) ) ) limCC A ) )
461 25 subid1d
 |-  ( ph -> ( ( G ` X ) - 0 ) = ( G ` X ) )
462 limcresi
 |-  ( ( z e. RR |-> ( G ` X ) ) limCC A ) C_ ( ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) limCC A )
463 resmpt
 |-  ( ( A (,) X ) C_ RR -> ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` X ) ) )
464 437 463 ax-mp
 |-  ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` X ) )
465 464 oveq1i
 |-  ( ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A )
466 462 465 sseqtri
 |-  ( ( z e. RR |-> ( G ` X ) ) limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A )
467 cncfmptc
 |-  ( ( ( G ` X ) e. RR /\ RR C_ CC /\ RR C_ CC ) -> ( z e. RR |-> ( G ` X ) ) e. ( RR -cn-> RR ) )
468 24 160 160 467 syl3anc
 |-  ( ph -> ( z e. RR |-> ( G ` X ) ) e. ( RR -cn-> RR ) )
469 eqidd
 |-  ( z = A -> ( G ` X ) = ( G ` X ) )
470 468 1 469 cnmptlimc
 |-  ( ph -> ( G ` X ) e. ( ( z e. RR |-> ( G ` X ) ) limCC A ) )
471 466 470 sselid
 |-  ( ph -> ( G ` X ) e. ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A ) )
472 limcresi
 |-  ( G limCC A ) C_ ( ( G |` ( A (,) X ) ) limCC A )
473 5 121 feqresmpt
 |-  ( ph -> ( G |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` z ) ) )
474 473 oveq1d
 |-  ( ph -> ( ( G |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) )
475 472 474 sseqtrid
 |-  ( ph -> ( G limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) )
476 475 9 sseldd
 |-  ( ph -> 0 e. ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) )
477 opelxpi
 |-  ( ( ( G ` X ) e. CC /\ 0 e. CC ) -> <. ( G ` X ) , 0 >. e. ( CC X. CC ) )
478 25 453 477 sylancl
 |-  ( ph -> <. ( G ` X ) , 0 >. e. ( CC X. CC ) )
479 456 cncnpi
 |-  ( ( - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( G ` X ) , 0 >. e. ( CC X. CC ) ) -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( G ` X ) , 0 >. ) )
480 452 478 479 sylancr
 |-  ( ph -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( G ` X ) , 0 >. ) )
481 136 140 419 419 55 435 471 476 480 limccnp2
 |-  ( ph -> ( ( G ` X ) - 0 ) e. ( ( z e. ( A (,) X ) |-> ( ( G ` X ) - ( G ` z ) ) ) limCC A ) )
482 461 481 eqeltrrd
 |-  ( ph -> ( G ` X ) e. ( ( z e. ( A (,) X ) |-> ( ( G ` X ) - ( G ` z ) ) ) limCC A ) )
483 eqid
 |-  ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) )
484 55 483 divcn
 |-  / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) )
485 eldifsn
 |-  ( ( G ` X ) e. ( CC \ { 0 } ) <-> ( ( G ` X ) e. CC /\ ( G ` X ) =/= 0 ) )
486 25 32 485 sylanbrc
 |-  ( ph -> ( G ` X ) e. ( CC \ { 0 } ) )
487 23 486 opelxpd
 |-  ( ph -> <. ( F ` X ) , ( G ` X ) >. e. ( CC X. ( CC \ { 0 } ) ) )
488 resttopon
 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) )
489 422 420 488 mp2an
 |-  ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) )
490 txtopon
 |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) -> ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) e. ( TopOn ` ( CC X. ( CC \ { 0 } ) ) ) )
491 422 489 490 mp2an
 |-  ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) e. ( TopOn ` ( CC X. ( CC \ { 0 } ) ) )
492 491 toponunii
 |-  ( CC X. ( CC \ { 0 } ) ) = U. ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) )
493 492 cncnpi
 |-  ( ( / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( F ` X ) , ( G ` X ) >. e. ( CC X. ( CC \ { 0 } ) ) ) -> / e. ( ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , ( G ` X ) >. ) )
494 484 487 493 sylancr
 |-  ( ph -> / e. ( ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , ( G ` X ) >. ) )
495 415 418 419 421 55 431 460 482 494 limccnp2
 |-  ( ph -> ( ( F ` X ) / ( G ` X ) ) e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) limCC A ) )
496 415 416 225 divcld
 |-  ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) e. CC )
497 496 fmpttd
 |-  ( ph -> ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) : ( A (,) X ) --> CC )
498 437 159 sstri
 |-  ( A (,) X ) C_ CC
499 498 a1i
 |-  ( ph -> ( A (,) X ) C_ CC )
500 497 499 74 55 ellimc2
 |-  ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) limCC A ) <-> ( ( ( F ` X ) / ( G ` X ) ) e. CC /\ A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) ) )
501 495 500 mpbid
 |-  ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. CC /\ A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) )
502 501 simprd
 |-  ( ph -> A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) )
503 notrab
 |-  ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) = { x e. CC | -. ( abs ` ( x - C ) ) <_ E }
504 76 cnmetdval
 |-  ( ( C e. CC /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( C - x ) ) )
505 abssub
 |-  ( ( C e. CC /\ x e. CC ) -> ( abs ` ( C - x ) ) = ( abs ` ( x - C ) ) )
506 504 505 eqtrd
 |-  ( ( C e. CC /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( x - C ) ) )
507 35 506 sylan
 |-  ( ( ph /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( x - C ) ) )
508 507 breq1d
 |-  ( ( ph /\ x e. CC ) -> ( ( C ( abs o. - ) x ) <_ E <-> ( abs ` ( x - C ) ) <_ E ) )
509 508 rabbidva
 |-  ( ph -> { x e. CC | ( C ( abs o. - ) x ) <_ E } = { x e. CC | ( abs ` ( x - C ) ) <_ E } )
510 42 a1i
 |-  ( ph -> ( abs o. - ) e. ( *Met ` CC ) )
511 38 rexrd
 |-  ( ph -> E e. RR* )
512 eqid
 |-  { x e. CC | ( C ( abs o. - ) x ) <_ E } = { x e. CC | ( C ( abs o. - ) x ) <_ E }
513 56 512 blcld
 |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ C e. CC /\ E e. RR* ) -> { x e. CC | ( C ( abs o. - ) x ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) )
514 510 35 511 513 syl3anc
 |-  ( ph -> { x e. CC | ( C ( abs o. - ) x ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) )
515 509 514 eqeltrrd
 |-  ( ph -> { x e. CC | ( abs ` ( x - C ) ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) )
516 427 cldopn
 |-  ( { x e. CC | ( abs ` ( x - C ) ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) e. ( TopOpen ` CCfld ) )
517 515 516 syl
 |-  ( ph -> ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) e. ( TopOpen ` CCfld ) )
518 503 517 eqeltrrid
 |-  ( ph -> { x e. CC | -. ( abs ` ( x - C ) ) <_ E } e. ( TopOpen ` CCfld ) )
519 410 502 518 rspcdva
 |-  ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) )
520 405 519 sylbird
 |-  ( ph -> ( -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) )
521 400 520 mt3d
 |-  ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E )
522 38 recnd
 |-  ( ph -> E e. CC )
523 522 mulid2d
 |-  ( ph -> ( 1 x. E ) = E )
524 1red
 |-  ( ph -> 1 e. RR )
525 1lt2
 |-  1 < 2
526 525 a1i
 |-  ( ph -> 1 < 2 )
527 524 40 13 526 ltmul1dd
 |-  ( ph -> ( 1 x. E ) < ( 2 x. E ) )
528 523 527 eqbrtrrd
 |-  ( ph -> E < ( 2 x. E ) )
529 37 38 41 521 528 lelttrd
 |-  ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) < ( 2 x. E ) )