Step |
Hyp |
Ref |
Expression |
1 |
|
lhop2.a |
|- ( ph -> A e. RR* ) |
2 |
|
lhop2.b |
|- ( ph -> B e. RR ) |
3 |
|
lhop2.l |
|- ( ph -> A < B ) |
4 |
|
lhop2.f |
|- ( ph -> F : ( A (,) B ) --> RR ) |
5 |
|
lhop2.g |
|- ( ph -> G : ( A (,) B ) --> RR ) |
6 |
|
lhop2.if |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
7 |
|
lhop2.ig |
|- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
8 |
|
lhop2.f0 |
|- ( ph -> 0 e. ( F limCC B ) ) |
9 |
|
lhop2.g0 |
|- ( ph -> 0 e. ( G limCC B ) ) |
10 |
|
lhop2.gn0 |
|- ( ph -> -. 0 e. ran G ) |
11 |
|
lhop2.gd0 |
|- ( ph -> -. 0 e. ran ( RR _D G ) ) |
12 |
|
lhop2.c |
|- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
13 |
|
qssre |
|- QQ C_ RR |
14 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
15 |
|
qbtwnxr |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> E. a e. QQ ( A < a /\ a < B ) ) |
16 |
1 14 3 15
|
syl3anc |
|- ( ph -> E. a e. QQ ( A < a /\ a < B ) ) |
17 |
|
ssrexv |
|- ( QQ C_ RR -> ( E. a e. QQ ( A < a /\ a < B ) -> E. a e. RR ( A < a /\ a < B ) ) ) |
18 |
13 16 17
|
mpsyl |
|- ( ph -> E. a e. RR ( A < a /\ a < B ) ) |
19 |
|
simpr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z e. ( a (,) B ) ) |
20 |
|
simprl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> a e. RR ) |
21 |
20
|
adantr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> a e. RR ) |
22 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> B e. RR ) |
23 |
|
elioore |
|- ( z e. ( a (,) B ) -> z e. RR ) |
24 |
23
|
adantl |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z e. RR ) |
25 |
|
iooneg |
|- ( ( a e. RR /\ B e. RR /\ z e. RR ) -> ( z e. ( a (,) B ) <-> -u z e. ( -u B (,) -u a ) ) ) |
26 |
21 22 24 25
|
syl3anc |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( z e. ( a (,) B ) <-> -u z e. ( -u B (,) -u a ) ) ) |
27 |
19 26
|
mpbid |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u z e. ( -u B (,) -u a ) ) |
28 |
27
|
adantrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( z e. ( a (,) B ) /\ -u z =/= -u B ) ) -> -u z e. ( -u B (,) -u a ) ) |
29 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> F : ( A (,) B ) --> RR ) |
30 |
|
elioore |
|- ( x e. ( -u B (,) -u a ) -> x e. RR ) |
31 |
30
|
adantl |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> x e. RR ) |
32 |
31
|
recnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> x e. CC ) |
33 |
32
|
negnegd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u -u x = x ) |
34 |
|
simpr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> x e. ( -u B (,) -u a ) ) |
35 |
33 34
|
eqeltrd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u -u x e. ( -u B (,) -u a ) ) |
36 |
20
|
adantr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> a e. RR ) |
37 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> B e. RR ) |
38 |
31
|
renegcld |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x e. RR ) |
39 |
|
iooneg |
|- ( ( a e. RR /\ B e. RR /\ -u x e. RR ) -> ( -u x e. ( a (,) B ) <-> -u -u x e. ( -u B (,) -u a ) ) ) |
40 |
36 37 38 39
|
syl3anc |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x e. ( a (,) B ) <-> -u -u x e. ( -u B (,) -u a ) ) ) |
41 |
35 40
|
mpbird |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x e. ( a (,) B ) ) |
42 |
1
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> A e. RR* ) |
43 |
20
|
rexrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> a e. RR* ) |
44 |
|
simprrl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> A < a ) |
45 |
42 43 44
|
xrltled |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> A <_ a ) |
46 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ a ) -> ( a (,) B ) C_ ( A (,) B ) ) |
47 |
42 45 46
|
syl2anc |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( a (,) B ) C_ ( A (,) B ) ) |
48 |
47
|
sselda |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ -u x e. ( a (,) B ) ) -> -u x e. ( A (,) B ) ) |
49 |
41 48
|
syldan |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x e. ( A (,) B ) ) |
50 |
29 49
|
ffvelrnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( F ` -u x ) e. RR ) |
51 |
50
|
recnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( F ` -u x ) e. CC ) |
52 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> G : ( A (,) B ) --> RR ) |
53 |
52 49
|
ffvelrnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) e. RR ) |
54 |
53
|
recnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) e. CC ) |
55 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -. 0 e. ran G ) |
56 |
5
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G : ( A (,) B ) --> RR ) |
57 |
|
ax-resscn |
|- RR C_ CC |
58 |
|
fss |
|- ( ( G : ( A (,) B ) --> RR /\ RR C_ CC ) -> G : ( A (,) B ) --> CC ) |
59 |
56 57 58
|
sylancl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G : ( A (,) B ) --> CC ) |
60 |
59
|
adantr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> G : ( A (,) B ) --> CC ) |
61 |
60
|
ffnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> G Fn ( A (,) B ) ) |
62 |
|
fnfvelrn |
|- ( ( G Fn ( A (,) B ) /\ -u x e. ( A (,) B ) ) -> ( G ` -u x ) e. ran G ) |
63 |
61 49 62
|
syl2anc |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) e. ran G ) |
64 |
|
eleq1 |
|- ( ( G ` -u x ) = 0 -> ( ( G ` -u x ) e. ran G <-> 0 e. ran G ) ) |
65 |
63 64
|
syl5ibcom |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( G ` -u x ) = 0 -> 0 e. ran G ) ) |
66 |
65
|
necon3bd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -. 0 e. ran G -> ( G ` -u x ) =/= 0 ) ) |
67 |
55 66
|
mpd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( G ` -u x ) =/= 0 ) |
68 |
51 54 67
|
divcld |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( F ` -u x ) / ( G ` -u x ) ) e. CC ) |
69 |
|
limcresi |
|- ( ( z e. RR |-> -u z ) limCC B ) C_ ( ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) limCC B ) |
70 |
|
ioossre |
|- ( a (,) B ) C_ RR |
71 |
|
resmpt |
|- ( ( a (,) B ) C_ RR -> ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) = ( z e. ( a (,) B ) |-> -u z ) ) |
72 |
70 71
|
ax-mp |
|- ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) = ( z e. ( a (,) B ) |-> -u z ) |
73 |
72
|
oveq1i |
|- ( ( ( z e. RR |-> -u z ) |` ( a (,) B ) ) limCC B ) = ( ( z e. ( a (,) B ) |-> -u z ) limCC B ) |
74 |
69 73
|
sseqtri |
|- ( ( z e. RR |-> -u z ) limCC B ) C_ ( ( z e. ( a (,) B ) |-> -u z ) limCC B ) |
75 |
|
eqid |
|- ( z e. RR |-> -u z ) = ( z e. RR |-> -u z ) |
76 |
75
|
negcncf |
|- ( RR C_ CC -> ( z e. RR |-> -u z ) e. ( RR -cn-> CC ) ) |
77 |
57 76
|
mp1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( z e. RR |-> -u z ) e. ( RR -cn-> CC ) ) |
78 |
2
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. RR ) |
79 |
|
negeq |
|- ( z = B -> -u z = -u B ) |
80 |
77 78 79
|
cnmptlimc |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B e. ( ( z e. RR |-> -u z ) limCC B ) ) |
81 |
74 80
|
sselid |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B e. ( ( z e. ( a (,) B ) |-> -u z ) limCC B ) ) |
82 |
78
|
renegcld |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B e. RR ) |
83 |
20
|
renegcld |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u a e. RR ) |
84 |
83
|
rexrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u a e. RR* ) |
85 |
|
simprrr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> a < B ) |
86 |
20 78
|
ltnegd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( a < B <-> -u B < -u a ) ) |
87 |
85 86
|
mpbid |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u B < -u a ) |
88 |
50
|
fmpttd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) : ( -u B (,) -u a ) --> RR ) |
89 |
53
|
fmpttd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) : ( -u B (,) -u a ) --> RR ) |
90 |
|
reelprrecn |
|- RR e. { RR , CC } |
91 |
90
|
a1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> RR e. { RR , CC } ) |
92 |
|
neg1cn |
|- -u 1 e. CC |
93 |
92
|
a1i |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u 1 e. CC ) |
94 |
4
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> F : ( A (,) B ) --> RR ) |
95 |
94
|
ffvelrnda |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( F ` y ) e. RR ) |
96 |
95
|
recnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( F ` y ) e. CC ) |
97 |
|
fvexd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( ( RR _D F ) ` y ) e. _V ) |
98 |
|
1cnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> 1 e. CC ) |
99 |
|
simpr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. RR ) -> x e. RR ) |
100 |
99
|
recnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. RR ) -> x e. CC ) |
101 |
|
1cnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. RR ) -> 1 e. CC ) |
102 |
91
|
dvmptid |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
103 |
|
ioossre |
|- ( -u B (,) -u a ) C_ RR |
104 |
103
|
a1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( -u B (,) -u a ) C_ RR ) |
105 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
106 |
105
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
107 |
|
iooretop |
|- ( -u B (,) -u a ) e. ( topGen ` ran (,) ) |
108 |
107
|
a1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( -u B (,) -u a ) e. ( topGen ` ran (,) ) ) |
109 |
91 100 101 102 104 106 105 108
|
dvmptres |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> x ) ) = ( x e. ( -u B (,) -u a ) |-> 1 ) ) |
110 |
91 32 98 109
|
dvmptneg |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> -u x ) ) = ( x e. ( -u B (,) -u a ) |-> -u 1 ) ) |
111 |
94
|
feqmptd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> F = ( y e. ( A (,) B ) |-> ( F ` y ) ) ) |
112 |
111
|
oveq2d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D F ) = ( RR _D ( y e. ( A (,) B ) |-> ( F ` y ) ) ) ) |
113 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
114 |
6
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
115 |
114
|
feq2d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
116 |
113 115
|
mpbii |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
117 |
116
|
feqmptd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D F ) = ( y e. ( A (,) B ) |-> ( ( RR _D F ) ` y ) ) ) |
118 |
112 117
|
eqtr3d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( y e. ( A (,) B ) |-> ( F ` y ) ) ) = ( y e. ( A (,) B ) |-> ( ( RR _D F ) ` y ) ) ) |
119 |
|
fveq2 |
|- ( y = -u x -> ( F ` y ) = ( F ` -u x ) ) |
120 |
|
fveq2 |
|- ( y = -u x -> ( ( RR _D F ) ` y ) = ( ( RR _D F ) ` -u x ) ) |
121 |
91 91 49 93 96 97 110 118 119 120
|
dvmptco |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) ) ) |
122 |
116
|
adantr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
123 |
122 49
|
ffvelrnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D F ) ` -u x ) e. CC ) |
124 |
123 93
|
mulcomd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) = ( -u 1 x. ( ( RR _D F ) ` -u x ) ) ) |
125 |
123
|
mulm1d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u 1 x. ( ( RR _D F ) ` -u x ) ) = -u ( ( RR _D F ) ` -u x ) ) |
126 |
124 125
|
eqtrd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) = -u ( ( RR _D F ) ` -u x ) ) |
127 |
126
|
mpteq2dva |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) x. -u 1 ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ) |
128 |
121 127
|
eqtrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ) |
129 |
128
|
dmeqd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ) |
130 |
|
negex |
|- -u ( ( RR _D F ) ` -u x ) e. _V |
131 |
|
eqid |
|- ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) |
132 |
130 131
|
dmmpti |
|- dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) = ( -u B (,) -u a ) |
133 |
129 132
|
eqtrdi |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) = ( -u B (,) -u a ) ) |
134 |
56
|
ffvelrnda |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( G ` y ) e. RR ) |
135 |
134
|
recnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( G ` y ) e. CC ) |
136 |
|
fvexd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ y e. ( A (,) B ) ) -> ( ( RR _D G ) ` y ) e. _V ) |
137 |
56
|
feqmptd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G = ( y e. ( A (,) B ) |-> ( G ` y ) ) ) |
138 |
137
|
oveq2d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) = ( RR _D ( y e. ( A (,) B ) |-> ( G ` y ) ) ) ) |
139 |
|
dvf |
|- ( RR _D G ) : dom ( RR _D G ) --> CC |
140 |
7
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D G ) = ( A (,) B ) ) |
141 |
140
|
feq2d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
142 |
139 141
|
mpbii |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
143 |
142
|
feqmptd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) = ( y e. ( A (,) B ) |-> ( ( RR _D G ) ` y ) ) ) |
144 |
138 143
|
eqtr3d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( y e. ( A (,) B ) |-> ( G ` y ) ) ) = ( y e. ( A (,) B ) |-> ( ( RR _D G ) ` y ) ) ) |
145 |
|
fveq2 |
|- ( y = -u x -> ( G ` y ) = ( G ` -u x ) ) |
146 |
|
fveq2 |
|- ( y = -u x -> ( ( RR _D G ) ` y ) = ( ( RR _D G ) ` -u x ) ) |
147 |
91 91 49 93 135 136 110 144 145 146
|
dvmptco |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) ) ) |
148 |
142
|
adantr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
149 |
148 49
|
ffvelrnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D G ) ` -u x ) e. CC ) |
150 |
149 93
|
mulcomd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) = ( -u 1 x. ( ( RR _D G ) ` -u x ) ) ) |
151 |
149
|
mulm1d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u 1 x. ( ( RR _D G ) ` -u x ) ) = -u ( ( RR _D G ) ` -u x ) ) |
152 |
150 151
|
eqtrd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) = -u ( ( RR _D G ) ` -u x ) ) |
153 |
152
|
mpteq2dva |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D G ) ` -u x ) x. -u 1 ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
154 |
147 153
|
eqtrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
155 |
154
|
dmeqd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
156 |
|
negex |
|- -u ( ( RR _D G ) ` -u x ) e. _V |
157 |
|
eqid |
|- ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) |
158 |
156 157
|
dmmpti |
|- dom ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) = ( -u B (,) -u a ) |
159 |
155 158
|
eqtrdi |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> dom ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ( -u B (,) -u a ) ) |
160 |
49
|
adantrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x =/= B ) ) -> -u x e. ( A (,) B ) ) |
161 |
|
limcresi |
|- ( ( x e. RR |-> -u x ) limCC -u B ) C_ ( ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) limCC -u B ) |
162 |
|
resmpt |
|- ( ( -u B (,) -u a ) C_ RR -> ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) = ( x e. ( -u B (,) -u a ) |-> -u x ) ) |
163 |
103 162
|
ax-mp |
|- ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) = ( x e. ( -u B (,) -u a ) |-> -u x ) |
164 |
163
|
oveq1i |
|- ( ( ( x e. RR |-> -u x ) |` ( -u B (,) -u a ) ) limCC -u B ) = ( ( x e. ( -u B (,) -u a ) |-> -u x ) limCC -u B ) |
165 |
161 164
|
sseqtri |
|- ( ( x e. RR |-> -u x ) limCC -u B ) C_ ( ( x e. ( -u B (,) -u a ) |-> -u x ) limCC -u B ) |
166 |
78
|
recnd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. CC ) |
167 |
166
|
negnegd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u -u B = B ) |
168 |
|
eqid |
|- ( x e. RR |-> -u x ) = ( x e. RR |-> -u x ) |
169 |
168
|
negcncf |
|- ( RR C_ CC -> ( x e. RR |-> -u x ) e. ( RR -cn-> CC ) ) |
170 |
57 169
|
mp1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. RR |-> -u x ) e. ( RR -cn-> CC ) ) |
171 |
|
negeq |
|- ( x = -u B -> -u x = -u -u B ) |
172 |
170 82 171
|
cnmptlimc |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -u -u B e. ( ( x e. RR |-> -u x ) limCC -u B ) ) |
173 |
167 172
|
eqeltrrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( x e. RR |-> -u x ) limCC -u B ) ) |
174 |
165 173
|
sselid |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( x e. ( -u B (,) -u a ) |-> -u x ) limCC -u B ) ) |
175 |
8
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( F limCC B ) ) |
176 |
111
|
oveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( F limCC B ) = ( ( y e. ( A (,) B ) |-> ( F ` y ) ) limCC B ) ) |
177 |
175 176
|
eleqtrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( y e. ( A (,) B ) |-> ( F ` y ) ) limCC B ) ) |
178 |
|
eliooord |
|- ( x e. ( -u B (,) -u a ) -> ( -u B < x /\ x < -u a ) ) |
179 |
178
|
adantl |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u B < x /\ x < -u a ) ) |
180 |
179
|
simpld |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u B < x ) |
181 |
37 31 180
|
ltnegcon1d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x < B ) |
182 |
38 181
|
ltned |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -u x =/= B ) |
183 |
182
|
neneqd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -. -u x = B ) |
184 |
183
|
pm2.21d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x = B -> ( F ` -u x ) = 0 ) ) |
185 |
184
|
impr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x = B ) ) -> ( F ` -u x ) = 0 ) |
186 |
160 96 174 177 119 185
|
limcco |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) limCC -u B ) ) |
187 |
9
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( G limCC B ) ) |
188 |
137
|
oveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( G limCC B ) = ( ( y e. ( A (,) B ) |-> ( G ` y ) ) limCC B ) ) |
189 |
187 188
|
eleqtrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( y e. ( A (,) B ) |-> ( G ` y ) ) limCC B ) ) |
190 |
183
|
pm2.21d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x = B -> ( G ` -u x ) = 0 ) ) |
191 |
190
|
impr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x = B ) ) -> ( G ` -u x ) = 0 ) |
192 |
160 135 174 189 145 191
|
limcco |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> 0 e. ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) limCC -u B ) ) |
193 |
63
|
fmpttd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) : ( -u B (,) -u a ) --> ran G ) |
194 |
193
|
frnd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ran ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) C_ ran G ) |
195 |
10
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran G ) |
196 |
194 195
|
ssneldd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) |
197 |
11
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran ( RR _D G ) ) |
198 |
154
|
rneqd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) = ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) |
199 |
198
|
eleq2d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( 0 e. ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) <-> 0 e. ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ) ) |
200 |
157 156
|
elrnmpti |
|- ( 0 e. ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) <-> E. x e. ( -u B (,) -u a ) 0 = -u ( ( RR _D G ) ` -u x ) ) |
201 |
|
eqcom |
|- ( 0 = -u ( ( RR _D G ) ` -u x ) <-> -u ( ( RR _D G ) ` -u x ) = 0 ) |
202 |
149
|
negeq0d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) = 0 <-> -u ( ( RR _D G ) ` -u x ) = 0 ) ) |
203 |
148
|
ffnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
204 |
|
fnfvelrn |
|- ( ( ( RR _D G ) Fn ( A (,) B ) /\ -u x e. ( A (,) B ) ) -> ( ( RR _D G ) ` -u x ) e. ran ( RR _D G ) ) |
205 |
203 49 204
|
syl2anc |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D G ) ` -u x ) e. ran ( RR _D G ) ) |
206 |
|
eleq1 |
|- ( ( ( RR _D G ) ` -u x ) = 0 -> ( ( ( RR _D G ) ` -u x ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
207 |
205 206
|
syl5ibcom |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D G ) ` -u x ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
208 |
202 207
|
sylbird |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u ( ( RR _D G ) ` -u x ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
209 |
201 208
|
syl5bi |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( 0 = -u ( ( RR _D G ) ` -u x ) -> 0 e. ran ( RR _D G ) ) ) |
210 |
209
|
rexlimdva |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( E. x e. ( -u B (,) -u a ) 0 = -u ( ( RR _D G ) ` -u x ) -> 0 e. ran ( RR _D G ) ) ) |
211 |
200 210
|
syl5bi |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( 0 e. ran ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) -> 0 e. ran ( RR _D G ) ) ) |
212 |
199 211
|
sylbid |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( 0 e. ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) -> 0 e. ran ( RR _D G ) ) ) |
213 |
197 212
|
mtod |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. 0 e. ran ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ) |
214 |
116
|
ffvelrnda |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D F ) ` z ) e. CC ) |
215 |
142
|
ffvelrnda |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. CC ) |
216 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 e. ran ( RR _D G ) ) |
217 |
142
|
ffnd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
218 |
|
fnfvelrn |
|- ( ( ( RR _D G ) Fn ( A (,) B ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. ran ( RR _D G ) ) |
219 |
217 218
|
sylan |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) e. ran ( RR _D G ) ) |
220 |
|
eleq1 |
|- ( ( ( RR _D G ) ` z ) = 0 -> ( ( ( RR _D G ) ` z ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
221 |
219 220
|
syl5ibcom |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( ( RR _D G ) ` z ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
222 |
221
|
necon3bd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( RR _D G ) ` z ) =/= 0 ) ) |
223 |
216 222
|
mpd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( RR _D G ) ` z ) =/= 0 ) |
224 |
214 215 223
|
divcld |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) e. CC ) |
225 |
12
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC B ) ) |
226 |
|
fveq2 |
|- ( z = -u x -> ( ( RR _D F ) ` z ) = ( ( RR _D F ) ` -u x ) ) |
227 |
|
fveq2 |
|- ( z = -u x -> ( ( RR _D G ) ` z ) = ( ( RR _D G ) ` -u x ) ) |
228 |
226 227
|
oveq12d |
|- ( z = -u x -> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) = ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) |
229 |
183
|
pm2.21d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u x = B -> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) = C ) ) |
230 |
229
|
impr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( x e. ( -u B (,) -u a ) /\ -u x = B ) ) -> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) = C ) |
231 |
160 224 174 225 228 230
|
limcco |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) limCC -u B ) ) |
232 |
|
nfcv |
|- F/_ x RR |
233 |
|
nfcv |
|- F/_ x _D |
234 |
|
nfmpt1 |
|- F/_ x ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) |
235 |
232 233 234
|
nfov |
|- F/_ x ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) |
236 |
|
nfcv |
|- F/_ x y |
237 |
235 236
|
nffv |
|- F/_ x ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) |
238 |
|
nfcv |
|- F/_ x / |
239 |
|
nfmpt1 |
|- F/_ x ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) |
240 |
232 233 239
|
nfov |
|- F/_ x ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) |
241 |
240 236
|
nffv |
|- F/_ x ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) |
242 |
237 238 241
|
nfov |
|- F/_ x ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) |
243 |
|
nfcv |
|- F/_ y ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) |
244 |
|
fveq2 |
|- ( y = x -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) = ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) ) |
245 |
|
fveq2 |
|- ( y = x -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) = ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) |
246 |
244 245
|
oveq12d |
|- ( y = x -> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) = ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) ) |
247 |
242 243 246
|
cbvmpt |
|- ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) ) |
248 |
128
|
fveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) = ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ` x ) ) |
249 |
131
|
fvmpt2 |
|- ( ( x e. ( -u B (,) -u a ) /\ -u ( ( RR _D F ) ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ` x ) = -u ( ( RR _D F ) ` -u x ) ) |
250 |
130 249
|
mpan2 |
|- ( x e. ( -u B (,) -u a ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D F ) ` -u x ) ) ` x ) = -u ( ( RR _D F ) ` -u x ) ) |
251 |
248 250
|
sylan9eq |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) = -u ( ( RR _D F ) ` -u x ) ) |
252 |
154
|
fveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) = ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ` x ) ) |
253 |
157
|
fvmpt2 |
|- ( ( x e. ( -u B (,) -u a ) /\ -u ( ( RR _D G ) ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ` x ) = -u ( ( RR _D G ) ` -u x ) ) |
254 |
156 253
|
mpan2 |
|- ( x e. ( -u B (,) -u a ) -> ( ( x e. ( -u B (,) -u a ) |-> -u ( ( RR _D G ) ` -u x ) ) ` x ) = -u ( ( RR _D G ) ` -u x ) ) |
255 |
252 254
|
sylan9eq |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) = -u ( ( RR _D G ) ` -u x ) ) |
256 |
251 255
|
oveq12d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) = ( -u ( ( RR _D F ) ` -u x ) / -u ( ( RR _D G ) ` -u x ) ) ) |
257 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> -. 0 e. ran ( RR _D G ) ) |
258 |
207
|
necon3bd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( RR _D G ) ` -u x ) =/= 0 ) ) |
259 |
257 258
|
mpd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( RR _D G ) ` -u x ) =/= 0 ) |
260 |
123 149 259
|
div2negd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( -u ( ( RR _D F ) ` -u x ) / -u ( ( RR _D G ) ` -u x ) ) = ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) |
261 |
256 260
|
eqtrd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) = ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) |
262 |
261
|
mpteq2dva |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` x ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) ) |
263 |
247 262
|
syl5eq |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) ) |
264 |
263
|
oveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) limCC -u B ) = ( ( x e. ( -u B (,) -u a ) |-> ( ( ( RR _D F ) ` -u x ) / ( ( RR _D G ) ` -u x ) ) ) limCC -u B ) ) |
265 |
231 264
|
eleqtrrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( y e. ( -u B (,) -u a ) |-> ( ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ) ` y ) / ( ( RR _D ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ) ` y ) ) ) limCC -u B ) ) |
266 |
82 84 87 88 89 133 159 186 192 196 213 265
|
lhop1 |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) limCC -u B ) ) |
267 |
|
nffvmpt1 |
|- F/_ x ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) |
268 |
|
nffvmpt1 |
|- F/_ x ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) |
269 |
267 238 268
|
nfov |
|- F/_ x ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) |
270 |
|
nfcv |
|- F/_ y ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) |
271 |
|
fveq2 |
|- ( y = x -> ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) = ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) ) |
272 |
|
fveq2 |
|- ( y = x -> ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) = ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) |
273 |
271 272
|
oveq12d |
|- ( y = x -> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) = ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) ) |
274 |
269 270 273
|
cbvmpt |
|- ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) ) |
275 |
|
fvex |
|- ( F ` -u x ) e. _V |
276 |
|
eqid |
|- ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) |
277 |
276
|
fvmpt2 |
|- ( ( x e. ( -u B (,) -u a ) /\ ( F ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) = ( F ` -u x ) ) |
278 |
34 275 277
|
sylancl |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) = ( F ` -u x ) ) |
279 |
|
fvex |
|- ( G ` -u x ) e. _V |
280 |
|
eqid |
|- ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) = ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) |
281 |
280
|
fvmpt2 |
|- ( ( x e. ( -u B (,) -u a ) /\ ( G ` -u x ) e. _V ) -> ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) = ( G ` -u x ) ) |
282 |
34 279 281
|
sylancl |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) = ( G ` -u x ) ) |
283 |
278 282
|
oveq12d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ x e. ( -u B (,) -u a ) ) -> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) = ( ( F ` -u x ) / ( G ` -u x ) ) ) |
284 |
283
|
mpteq2dva |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( x e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` x ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` x ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) ) |
285 |
274 284
|
syl5eq |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) = ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) ) |
286 |
285
|
oveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( y e. ( -u B (,) -u a ) |-> ( ( ( x e. ( -u B (,) -u a ) |-> ( F ` -u x ) ) ` y ) / ( ( x e. ( -u B (,) -u a ) |-> ( G ` -u x ) ) ` y ) ) ) limCC -u B ) = ( ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) limCC -u B ) ) |
287 |
266 286
|
eleqtrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( x e. ( -u B (,) -u a ) |-> ( ( F ` -u x ) / ( G ` -u x ) ) ) limCC -u B ) ) |
288 |
|
negeq |
|- ( x = -u z -> -u x = -u -u z ) |
289 |
288
|
fveq2d |
|- ( x = -u z -> ( F ` -u x ) = ( F ` -u -u z ) ) |
290 |
288
|
fveq2d |
|- ( x = -u z -> ( G ` -u x ) = ( G ` -u -u z ) ) |
291 |
289 290
|
oveq12d |
|- ( x = -u z -> ( ( F ` -u x ) / ( G ` -u x ) ) = ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) |
292 |
82
|
adantr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u B e. RR ) |
293 |
|
eliooord |
|- ( z e. ( a (,) B ) -> ( a < z /\ z < B ) ) |
294 |
293
|
adantl |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( a < z /\ z < B ) ) |
295 |
294
|
simprd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z < B ) |
296 |
24 22
|
ltnegd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( z < B <-> -u B < -u z ) ) |
297 |
295 296
|
mpbid |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u B < -u z ) |
298 |
292 297
|
gtned |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u z =/= -u B ) |
299 |
298
|
neneqd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -. -u z = -u B ) |
300 |
299
|
pm2.21d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( -u z = -u B -> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) = C ) ) |
301 |
300
|
impr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ ( z e. ( a (,) B ) /\ -u z = -u B ) ) -> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) = C ) |
302 |
28 68 81 287 291 301
|
limcco |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) limCC B ) ) |
303 |
24
|
recnd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> z e. CC ) |
304 |
303
|
negnegd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> -u -u z = z ) |
305 |
304
|
fveq2d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( F ` -u -u z ) = ( F ` z ) ) |
306 |
304
|
fveq2d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( G ` -u -u z ) = ( G ` z ) ) |
307 |
305 306
|
oveq12d |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( a (,) B ) ) -> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) = ( ( F ` z ) / ( G ` z ) ) ) |
308 |
307
|
mpteq2dva |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) = ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
309 |
308
|
oveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) limCC B ) = ( ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
310 |
47
|
resmptd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( a (,) B ) ) = ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) ) |
311 |
310
|
oveq1d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( a (,) B ) ) limCC B ) = ( ( z e. ( a (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
312 |
|
fss |
|- ( ( F : ( A (,) B ) --> RR /\ RR C_ CC ) -> F : ( A (,) B ) --> CC ) |
313 |
94 57 312
|
sylancl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> F : ( A (,) B ) --> CC ) |
314 |
313
|
ffvelrnda |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( F ` z ) e. CC ) |
315 |
59
|
ffvelrnda |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( G ` z ) e. CC ) |
316 |
10
|
ad2antrr |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> -. 0 e. ran G ) |
317 |
56
|
ffnd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> G Fn ( A (,) B ) ) |
318 |
|
fnfvelrn |
|- ( ( G Fn ( A (,) B ) /\ z e. ( A (,) B ) ) -> ( G ` z ) e. ran G ) |
319 |
317 318
|
sylan |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( G ` z ) e. ran G ) |
320 |
|
eleq1 |
|- ( ( G ` z ) = 0 -> ( ( G ` z ) e. ran G <-> 0 e. ran G ) ) |
321 |
319 320
|
syl5ibcom |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( G ` z ) = 0 -> 0 e. ran G ) ) |
322 |
321
|
necon3bd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( -. 0 e. ran G -> ( G ` z ) =/= 0 ) ) |
323 |
316 322
|
mpd |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( G ` z ) =/= 0 ) |
324 |
314 315 323
|
divcld |
|- ( ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) /\ z e. ( A (,) B ) ) -> ( ( F ` z ) / ( G ` z ) ) e. CC ) |
325 |
324
|
fmpttd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) : ( A (,) B ) --> CC ) |
326 |
|
ioossre |
|- ( A (,) B ) C_ RR |
327 |
326 57
|
sstri |
|- ( A (,) B ) C_ CC |
328 |
327
|
a1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( A (,) B ) C_ CC ) |
329 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) |
330 |
|
ssun2 |
|- { B } C_ ( ( a (,) B ) u. { B } ) |
331 |
|
snssg |
|- ( B e. RR -> ( B e. ( ( a (,) B ) u. { B } ) <-> { B } C_ ( ( a (,) B ) u. { B } ) ) ) |
332 |
78 331
|
syl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( B e. ( ( a (,) B ) u. { B } ) <-> { B } C_ ( ( a (,) B ) u. { B } ) ) ) |
333 |
330 332
|
mpbiri |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( a (,) B ) u. { B } ) ) |
334 |
105
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
335 |
326
|
a1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( A (,) B ) C_ RR ) |
336 |
78
|
snssd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> { B } C_ RR ) |
337 |
335 336
|
unssd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( A (,) B ) u. { B } ) C_ RR ) |
338 |
337 57
|
sstrdi |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( A (,) B ) u. { B } ) C_ CC ) |
339 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( A (,) B ) u. { B } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. ( TopOn ` ( ( A (,) B ) u. { B } ) ) ) |
340 |
334 338 339
|
sylancr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. ( TopOn ` ( ( A (,) B ) u. { B } ) ) ) |
341 |
|
topontop |
|- ( ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. ( TopOn ` ( ( A (,) B ) u. { B } ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) |
342 |
340 341
|
syl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) |
343 |
|
indi |
|- ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) = ( ( ( a (,) +oo ) i^i ( A (,) B ) ) u. ( ( a (,) +oo ) i^i { B } ) ) |
344 |
|
pnfxr |
|- +oo e. RR* |
345 |
344
|
a1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> +oo e. RR* ) |
346 |
14
|
adantr |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. RR* ) |
347 |
|
iooin |
|- ( ( ( a e. RR* /\ +oo e. RR* ) /\ ( A e. RR* /\ B e. RR* ) ) -> ( ( a (,) +oo ) i^i ( A (,) B ) ) = ( if ( a <_ A , A , a ) (,) if ( +oo <_ B , +oo , B ) ) ) |
348 |
43 345 42 346 347
|
syl22anc |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( A (,) B ) ) = ( if ( a <_ A , A , a ) (,) if ( +oo <_ B , +oo , B ) ) ) |
349 |
|
xrltnle |
|- ( ( A e. RR* /\ a e. RR* ) -> ( A < a <-> -. a <_ A ) ) |
350 |
42 43 349
|
syl2anc |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( A < a <-> -. a <_ A ) ) |
351 |
44 350
|
mpbid |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. a <_ A ) |
352 |
351
|
iffalsed |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> if ( a <_ A , A , a ) = a ) |
353 |
78
|
ltpnfd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B < +oo ) |
354 |
|
xrltnle |
|- ( ( B e. RR* /\ +oo e. RR* ) -> ( B < +oo <-> -. +oo <_ B ) ) |
355 |
346 344 354
|
sylancl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( B < +oo <-> -. +oo <_ B ) ) |
356 |
353 355
|
mpbid |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> -. +oo <_ B ) |
357 |
356
|
iffalsed |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> if ( +oo <_ B , +oo , B ) = B ) |
358 |
352 357
|
oveq12d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( if ( a <_ A , A , a ) (,) if ( +oo <_ B , +oo , B ) ) = ( a (,) B ) ) |
359 |
348 358
|
eqtrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( A (,) B ) ) = ( a (,) B ) ) |
360 |
|
elioopnf |
|- ( a e. RR* -> ( B e. ( a (,) +oo ) <-> ( B e. RR /\ a < B ) ) ) |
361 |
43 360
|
syl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( B e. ( a (,) +oo ) <-> ( B e. RR /\ a < B ) ) ) |
362 |
78 85 361
|
mpbir2and |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( a (,) +oo ) ) |
363 |
362
|
snssd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> { B } C_ ( a (,) +oo ) ) |
364 |
|
sseqin2 |
|- ( { B } C_ ( a (,) +oo ) <-> ( ( a (,) +oo ) i^i { B } ) = { B } ) |
365 |
363 364
|
sylib |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i { B } ) = { B } ) |
366 |
359 365
|
uneq12d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( ( a (,) +oo ) i^i ( A (,) B ) ) u. ( ( a (,) +oo ) i^i { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
367 |
343 366
|
syl5eq |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
368 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
369 |
|
reex |
|- RR e. _V |
370 |
369
|
ssex |
|- ( ( ( A (,) B ) u. { B } ) C_ RR -> ( ( A (,) B ) u. { B } ) e. _V ) |
371 |
337 370
|
syl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( A (,) B ) u. { B } ) e. _V ) |
372 |
|
iooretop |
|- ( a (,) +oo ) e. ( topGen ` ran (,) ) |
373 |
372
|
a1i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( a (,) +oo ) e. ( topGen ` ran (,) ) ) |
374 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A (,) B ) u. { B } ) e. _V /\ ( a (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
375 |
368 371 373 374
|
mp3an2i |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) +oo ) i^i ( ( A (,) B ) u. { B } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
376 |
367 375
|
eqeltrrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) B ) u. { B } ) e. ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
377 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
378 |
105 377
|
rerest |
|- ( ( ( A (,) B ) u. { B } ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
379 |
337 378
|
syl |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( topGen ` ran (,) ) |`t ( ( A (,) B ) u. { B } ) ) ) |
380 |
376 379
|
eleqtrrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( a (,) B ) u. { B } ) e. ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) |
381 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top /\ ( ( a (,) B ) u. { B } ) e. ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) ` ( ( a (,) B ) u. { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
382 |
342 380 381
|
syl2anc |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) ` ( ( a (,) B ) u. { B } ) ) = ( ( a (,) B ) u. { B } ) ) |
383 |
333 382
|
eleqtrrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> B e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) ` ( ( a (,) B ) u. { B } ) ) ) |
384 |
325 47 328 105 329 383
|
limcres |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) |` ( a (,) B ) ) limCC B ) = ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
385 |
309 311 384
|
3eqtr2d |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> ( ( z e. ( a (,) B ) |-> ( ( F ` -u -u z ) / ( G ` -u -u z ) ) ) limCC B ) = ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
386 |
302 385
|
eleqtrd |
|- ( ( ph /\ ( a e. RR /\ ( A < a /\ a < B ) ) ) -> C e. ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |
387 |
18 386
|
rexlimddv |
|- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( F ` z ) / ( G ` z ) ) ) limCC B ) ) |