Step |
Hyp |
Ref |
Expression |
1 |
|
lhp0lt.s |
|- .< = ( lt ` K ) |
2 |
|
lhp0lt.z |
|- .0. = ( 0. ` K ) |
3 |
|
lhp0lt.h |
|- H = ( LHyp ` K ) |
4 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
5 |
1 4 3
|
lhpexlt |
|- ( ( K e. HL /\ W e. H ) -> E. p e. ( Atoms ` K ) p .< W ) |
6 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> K e. HL ) |
7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
8 2
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
10 |
6 7 9
|
3syl |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. e. ( Base ` K ) ) |
11 |
8 4
|
atbase |
|- ( p e. ( Atoms ` K ) -> p e. ( Base ` K ) ) |
12 |
11
|
3ad2ant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> p e. ( Base ` K ) ) |
13 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> p e. ( Atoms ` K ) ) |
14 |
|
eqid |
|- ( |
15 |
2 14 4
|
atcvr0 |
|- ( ( K e. HL /\ p e. ( Atoms ` K ) ) -> .0. ( |
16 |
6 13 15
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. ( |
17 |
8 1 14
|
cvrlt |
|- ( ( ( K e. HL /\ .0. e. ( Base ` K ) /\ p e. ( Base ` K ) ) /\ .0. ( .0. .< p ) |
18 |
6 10 12 16 17
|
syl31anc |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. .< p ) |
19 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> p .< W ) |
20 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
21 |
6 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> K e. Poset ) |
22 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> W e. H ) |
23 |
8 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
24 |
22 23
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> W e. ( Base ` K ) ) |
25 |
8 1
|
plttr |
|- ( ( K e. Poset /\ ( .0. e. ( Base ` K ) /\ p e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( .0. .< p /\ p .< W ) -> .0. .< W ) ) |
26 |
21 10 12 24 25
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> ( ( .0. .< p /\ p .< W ) -> .0. .< W ) ) |
27 |
18 19 26
|
mp2and |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. .< W ) |
28 |
27
|
rexlimdv3a |
|- ( ( K e. HL /\ W e. H ) -> ( E. p e. ( Atoms ` K ) p .< W -> .0. .< W ) ) |
29 |
5 28
|
mpd |
|- ( ( K e. HL /\ W e. H ) -> .0. .< W ) |