| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhp0lt.s |
|- .< = ( lt ` K ) |
| 2 |
|
lhp0lt.z |
|- .0. = ( 0. ` K ) |
| 3 |
|
lhp0lt.h |
|- H = ( LHyp ` K ) |
| 4 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 5 |
1 4 3
|
lhpexlt |
|- ( ( K e. HL /\ W e. H ) -> E. p e. ( Atoms ` K ) p .< W ) |
| 6 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> K e. HL ) |
| 7 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 9 |
8 2
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
| 10 |
6 7 9
|
3syl |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. e. ( Base ` K ) ) |
| 11 |
8 4
|
atbase |
|- ( p e. ( Atoms ` K ) -> p e. ( Base ` K ) ) |
| 12 |
11
|
3ad2ant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> p e. ( Base ` K ) ) |
| 13 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> p e. ( Atoms ` K ) ) |
| 14 |
|
eqid |
|- ( |
| 15 |
2 14 4
|
atcvr0 |
|- ( ( K e. HL /\ p e. ( Atoms ` K ) ) -> .0. ( |
| 16 |
6 13 15
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. ( |
| 17 |
8 1 14
|
cvrlt |
|- ( ( ( K e. HL /\ .0. e. ( Base ` K ) /\ p e. ( Base ` K ) ) /\ .0. ( .0. .< p ) |
| 18 |
6 10 12 16 17
|
syl31anc |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. .< p ) |
| 19 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> p .< W ) |
| 20 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
| 21 |
6 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> K e. Poset ) |
| 22 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> W e. H ) |
| 23 |
8 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 24 |
22 23
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> W e. ( Base ` K ) ) |
| 25 |
8 1
|
plttr |
|- ( ( K e. Poset /\ ( .0. e. ( Base ` K ) /\ p e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( .0. .< p /\ p .< W ) -> .0. .< W ) ) |
| 26 |
21 10 12 24 25
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> ( ( .0. .< p /\ p .< W ) -> .0. .< W ) ) |
| 27 |
18 19 26
|
mp2and |
|- ( ( ( K e. HL /\ W e. H ) /\ p e. ( Atoms ` K ) /\ p .< W ) -> .0. .< W ) |
| 28 |
27
|
rexlimdv3a |
|- ( ( K e. HL /\ W e. H ) -> ( E. p e. ( Atoms ` K ) p .< W -> .0. .< W ) ) |
| 29 |
5 28
|
mpd |
|- ( ( K e. HL /\ W e. H ) -> .0. .< W ) |