Step |
Hyp |
Ref |
Expression |
1 |
|
lhp2lt.l |
|- .<_ = ( le ` K ) |
2 |
|
lhp2lt.s |
|- .< = ( lt ` K ) |
3 |
|
lhp2lt.j |
|- .\/ = ( join ` K ) |
4 |
|
lhp2lt.a |
|- A = ( Atoms ` K ) |
5 |
|
lhp2lt.h |
|- H = ( LHyp ` K ) |
6 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> P .<_ W ) |
7 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> Q .<_ W ) |
8 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> K e. HL ) |
9 |
8
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> K e. Lat ) |
10 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> P e. A ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
11 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
13 |
10 12
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> P e. ( Base ` K ) ) |
14 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> Q e. A ) |
15 |
11 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
16 |
14 15
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> Q e. ( Base ` K ) ) |
17 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> W e. H ) |
18 |
11 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
19 |
17 18
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> W e. ( Base ` K ) ) |
20 |
11 1 3
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
21 |
9 13 16 19 20
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( ( P .<_ W /\ Q .<_ W ) <-> ( P .\/ Q ) .<_ W ) ) |
22 |
6 7 21
|
mpbi2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( P .\/ Q ) .<_ W ) |
23 |
3 1 4
|
3dim2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> E. r e. A E. s e. A ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) |
24 |
8 10 14 23
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> E. r e. A E. s e. A ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) |
25 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> K e. HL ) |
26 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
27 |
25 26
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> K e. OP ) |
28 |
25
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> K e. Lat ) |
29 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> P e. A ) |
30 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> Q e. A ) |
31 |
11 3 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
32 |
25 29 30 31
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
33 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> r e. A ) |
34 |
11 4
|
atbase |
|- ( r e. A -> r e. ( Base ` K ) ) |
35 |
33 34
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> r e. ( Base ` K ) ) |
36 |
11 3
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ r e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ r ) e. ( Base ` K ) ) |
37 |
28 32 35 36
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> ( ( P .\/ Q ) .\/ r ) e. ( Base ` K ) ) |
38 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> s e. A ) |
39 |
11 4
|
atbase |
|- ( s e. A -> s e. ( Base ` K ) ) |
40 |
38 39
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> s e. ( Base ` K ) ) |
41 |
11 3
|
latjcl |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ r ) e. ( Base ` K ) /\ s e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ r ) .\/ s ) e. ( Base ` K ) ) |
42 |
28 37 40 41
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> ( ( ( P .\/ Q ) .\/ r ) .\/ s ) e. ( Base ` K ) ) |
43 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
44 |
|
eqid |
|- ( |
45 |
11 43 44
|
ncvr1 |
|- ( ( K e. OP /\ ( ( ( P .\/ Q ) .\/ r ) .\/ s ) e. ( Base ` K ) ) -> -. ( 1. ` K ) ( |
46 |
27 42 45
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> -. ( 1. ` K ) ( |
47 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
48 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> K e. HL ) |
49 |
48
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> K e. Lat ) |
50 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> P e. A ) |
51 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> Q e. A ) |
52 |
48 50 51 31
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
53 |
|
simpr1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> r e. A ) |
54 |
53 34
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> r e. ( Base ` K ) ) |
55 |
49 52 54 36
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( ( P .\/ Q ) .\/ r ) e. ( Base ` K ) ) |
56 |
48 26
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> K e. OP ) |
57 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
58 |
11 47 57
|
op01dm |
|- ( K e. OP -> ( ( Base ` K ) e. dom ( lub ` K ) /\ ( Base ` K ) e. dom ( glb ` K ) ) ) |
59 |
58
|
simpld |
|- ( K e. OP -> ( Base ` K ) e. dom ( lub ` K ) ) |
60 |
56 59
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( Base ` K ) e. dom ( lub ` K ) ) |
61 |
11 47 1 43 48 55 60
|
ple1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( ( P .\/ Q ) .\/ r ) .<_ ( 1. ` K ) ) |
62 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
63 |
48 62
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> K e. Poset ) |
64 |
11 43
|
op1cl |
|- ( K e. OP -> ( 1. ` K ) e. ( Base ` K ) ) |
65 |
56 64
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( 1. ` K ) e. ( Base ` K ) ) |
66 |
|
simpr2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> -. r .<_ ( P .\/ Q ) ) |
67 |
11 1 3 44 4
|
cvr1 |
|- ( ( K e. HL /\ ( P .\/ Q ) e. ( Base ` K ) /\ r e. A ) -> ( -. r .<_ ( P .\/ Q ) <-> ( P .\/ Q ) ( |
68 |
48 52 53 67
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( -. r .<_ ( P .\/ Q ) <-> ( P .\/ Q ) ( |
69 |
66 68
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( P .\/ Q ) ( |
70 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( P .\/ Q ) = W ) |
71 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> W e. H ) |
72 |
43 44 5
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W ( |
73 |
48 71 72
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> W ( |
74 |
70 73
|
eqbrtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( P .\/ Q ) ( |
75 |
11 1 44
|
cvrcmp |
|- ( ( K e. Poset /\ ( ( ( P .\/ Q ) .\/ r ) e. ( Base ` K ) /\ ( 1. ` K ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) /\ ( ( P .\/ Q ) ( ( ( ( P .\/ Q ) .\/ r ) .<_ ( 1. ` K ) <-> ( ( P .\/ Q ) .\/ r ) = ( 1. ` K ) ) ) |
76 |
63 55 65 52 69 74 75
|
syl132anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( ( ( P .\/ Q ) .\/ r ) .<_ ( 1. ` K ) <-> ( ( P .\/ Q ) .\/ r ) = ( 1. ` K ) ) ) |
77 |
61 76
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( ( P .\/ Q ) .\/ r ) = ( 1. ` K ) ) |
78 |
|
simpr2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> -. s .<_ ( ( P .\/ Q ) .\/ r ) ) |
79 |
|
simpr1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> s e. A ) |
80 |
11 1 3 44 4
|
cvr1 |
|- ( ( K e. HL /\ ( ( P .\/ Q ) .\/ r ) e. ( Base ` K ) /\ s e. A ) -> ( -. s .<_ ( ( P .\/ Q ) .\/ r ) <-> ( ( P .\/ Q ) .\/ r ) ( |
81 |
48 55 79 80
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( -. s .<_ ( ( P .\/ Q ) .\/ r ) <-> ( ( P .\/ Q ) .\/ r ) ( |
82 |
78 81
|
mpbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( ( P .\/ Q ) .\/ r ) ( |
83 |
77 82
|
eqbrtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) /\ ( P .\/ Q ) = W ) ) -> ( 1. ` K ) ( |
84 |
83
|
3exp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( ( r e. A /\ s e. A ) -> ( ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) -> ( ( P .\/ Q ) = W -> ( 1. ` K ) ( |
85 |
84
|
3imp |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> ( ( P .\/ Q ) = W -> ( 1. ` K ) ( |
86 |
85
|
necon3bd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> ( -. ( 1. ` K ) ( ( P .\/ Q ) =/= W ) ) |
87 |
46 86
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) /\ ( r e. A /\ s e. A ) /\ ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) ) -> ( P .\/ Q ) =/= W ) |
88 |
87
|
3exp |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( ( r e. A /\ s e. A ) -> ( ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) -> ( P .\/ Q ) =/= W ) ) ) |
89 |
88
|
rexlimdvv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( E. r e. A E. s e. A ( -. r .<_ ( P .\/ Q ) /\ -. s .<_ ( ( P .\/ Q ) .\/ r ) ) -> ( P .\/ Q ) =/= W ) ) |
90 |
24 89
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( P .\/ Q ) =/= W ) |
91 |
8 10 14 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
92 |
1 2
|
pltval |
|- ( ( K e. HL /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. H ) -> ( ( P .\/ Q ) .< W <-> ( ( P .\/ Q ) .<_ W /\ ( P .\/ Q ) =/= W ) ) ) |
93 |
8 91 17 92
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( ( P .\/ Q ) .< W <-> ( ( P .\/ Q ) .<_ W /\ ( P .\/ Q ) =/= W ) ) ) |
94 |
22 90 93
|
mpbir2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) /\ ( Q e. A /\ Q .<_ W ) ) -> ( P .\/ Q ) .< W ) |