Step |
Hyp |
Ref |
Expression |
1 |
|
lhpat.l |
|- .<_ = ( le ` K ) |
2 |
|
lhpat.j |
|- .\/ = ( join ` K ) |
3 |
|
lhpat.m |
|- ./\ = ( meet ` K ) |
4 |
|
lhpat.a |
|- A = ( Atoms ` K ) |
5 |
|
lhpat.h |
|- H = ( LHyp ` K ) |
6 |
|
lhpat2.r |
|- R = ( ( P .\/ Q ) ./\ W ) |
7 |
|
simpl3r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> S .<_ ( P .\/ Q ) ) |
8 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> S .<_ W ) |
9 |
|
simp1ll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
10 |
9
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
11 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> S e. A ) |
12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
13 |
12 4
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
14 |
11 13
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> S e. ( Base ` K ) ) |
15 |
|
simp1rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> P e. A ) |
16 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
17 |
12 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
18 |
9 15 16 17
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
19 |
|
simp1lr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> W e. H ) |
20 |
12 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
21 |
19 20
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
22 |
12 1 3
|
latlem12 |
|- ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( S .<_ ( P .\/ Q ) /\ S .<_ W ) <-> S .<_ ( ( P .\/ Q ) ./\ W ) ) ) |
23 |
10 14 18 21 22
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> ( ( S .<_ ( P .\/ Q ) /\ S .<_ W ) <-> S .<_ ( ( P .\/ Q ) ./\ W ) ) ) |
24 |
23
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> ( ( S .<_ ( P .\/ Q ) /\ S .<_ W ) <-> S .<_ ( ( P .\/ Q ) ./\ W ) ) ) |
25 |
7 8 24
|
mpbi2and |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> S .<_ ( ( P .\/ Q ) ./\ W ) ) |
26 |
25 6
|
breqtrrdi |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> S .<_ R ) |
27 |
9
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> K e. HL ) |
28 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
29 |
27 28
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> K e. AtLat ) |
30 |
|
simpl2r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> S e. A ) |
31 |
|
simpl1l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> ( K e. HL /\ W e. H ) ) |
32 |
|
simpl1r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> ( P e. A /\ -. P .<_ W ) ) |
33 |
|
simpl2l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> Q e. A ) |
34 |
|
simpl3l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> P =/= Q ) |
35 |
1 2 3 4 5 6
|
lhpat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> R e. A ) |
36 |
31 32 33 34 35
|
syl112anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> R e. A ) |
37 |
1 4
|
atcmp |
|- ( ( K e. AtLat /\ S e. A /\ R e. A ) -> ( S .<_ R <-> S = R ) ) |
38 |
29 30 36 37
|
syl3anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> ( S .<_ R <-> S = R ) ) |
39 |
26 38
|
mpbid |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) /\ S .<_ W ) -> S = R ) |
40 |
39
|
ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> ( S .<_ W -> S = R ) ) |
41 |
12 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
42 |
10 18 21 41
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
43 |
6 42
|
eqbrtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> R .<_ W ) |
44 |
|
breq1 |
|- ( S = R -> ( S .<_ W <-> R .<_ W ) ) |
45 |
43 44
|
syl5ibrcom |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> ( S = R -> S .<_ W ) ) |
46 |
40 45
|
impbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> ( S .<_ W <-> S = R ) ) |
47 |
46
|
necon3bbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q e. A /\ S e. A ) /\ ( P =/= Q /\ S .<_ ( P .\/ Q ) ) ) -> ( -. S .<_ W <-> S =/= R ) ) |