| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpat.l |
|- .<_ = ( le ` K ) |
| 2 |
|
lhpat.j |
|- .\/ = ( join ` K ) |
| 3 |
|
lhpat.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
lhpat.a |
|- A = ( Atoms ` K ) |
| 5 |
|
lhpat.h |
|- H = ( LHyp ` K ) |
| 6 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( U e. A /\ U .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( U e. A /\ U .<_ W ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 8 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( U e. A /\ U .<_ W ) ) -> U e. A ) |
| 9 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 10 |
9 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
| 11 |
8 10
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( U e. A /\ U .<_ W ) ) -> U e. ( Base ` K ) ) |
| 12 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( U e. A /\ U .<_ W ) ) -> U .<_ W ) |
| 13 |
9 1 2 3 4 5
|
lhple |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( U e. ( Base ` K ) /\ U .<_ W ) ) -> ( ( P .\/ U ) ./\ W ) = U ) |
| 14 |
6 7 11 12 13
|
syl112anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( U e. A /\ U .<_ W ) ) -> ( ( P .\/ U ) ./\ W ) = U ) |