| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpbase.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | lhpbase.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | n0i |  |-  ( W e. H -> -. H = (/) ) | 
						
							| 4 | 2 | eqeq1i |  |-  ( H = (/) <-> ( LHyp ` K ) = (/) ) | 
						
							| 5 | 3 4 | sylnib |  |-  ( W e. H -> -. ( LHyp ` K ) = (/) ) | 
						
							| 6 |  | fvprc |  |-  ( -. K e. _V -> ( LHyp ` K ) = (/) ) | 
						
							| 7 | 5 6 | nsyl2 |  |-  ( W e. H -> K e. _V ) | 
						
							| 8 |  | eqid |  |-  ( 1. ` K ) = ( 1. ` K ) | 
						
							| 9 |  | eqid |  |-  (  | 
						
							| 10 | 1 8 9 2 | islhp |  |-  ( K e. _V -> ( W e. H <-> ( W e. B /\ W (  | 
						
							| 11 | 10 | simprbda |  |-  ( ( K e. _V /\ W e. H ) -> W e. B ) | 
						
							| 12 | 7 11 | mpancom |  |-  ( W e. H -> W e. B ) |