| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhp2a.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | lhp2a.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | lhp2a.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | simpl |  |-  ( ( K e. HL /\ W e. H ) -> K e. HL ) | 
						
							| 5 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 6 | 5 3 | lhpbase |  |-  ( W e. H -> W e. ( Base ` K ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) | 
						
							| 8 |  | eqid |  |-  ( 0. ` K ) = ( 0. ` K ) | 
						
							| 9 | 8 3 | lhpn0 |  |-  ( ( K e. HL /\ W e. H ) -> W =/= ( 0. ` K ) ) | 
						
							| 10 | 5 1 8 2 | atle |  |-  ( ( K e. HL /\ W e. ( Base ` K ) /\ W =/= ( 0. ` K ) ) -> E. p e. A p .<_ W ) | 
						
							| 11 | 4 7 9 10 | syl3anc |  |-  ( ( K e. HL /\ W e. H ) -> E. p e. A p .<_ W ) |