Step |
Hyp |
Ref |
Expression |
1 |
|
lhp2a.l |
|- .<_ = ( le ` K ) |
2 |
|
lhp2a.a |
|- A = ( Atoms ` K ) |
3 |
|
lhp2a.h |
|- H = ( LHyp ` K ) |
4 |
|
simpl |
|- ( ( K e. HL /\ W e. H ) -> K e. HL ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
5 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
7 |
6
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
8 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
9 |
8 3
|
lhpn0 |
|- ( ( K e. HL /\ W e. H ) -> W =/= ( 0. ` K ) ) |
10 |
5 1 8 2
|
atle |
|- ( ( K e. HL /\ W e. ( Base ` K ) /\ W =/= ( 0. ` K ) ) -> E. p e. A p .<_ W ) |
11 |
4 7 9 10
|
syl3anc |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A p .<_ W ) |