Metamath Proof Explorer


Theorem lhpexle

Description: There exists an atom under a co-atom. (Contributed by NM, 26-Apr-2013)

Ref Expression
Hypotheses lhp2a.l
|- .<_ = ( le ` K )
lhp2a.a
|- A = ( Atoms ` K )
lhp2a.h
|- H = ( LHyp ` K )
Assertion lhpexle
|- ( ( K e. HL /\ W e. H ) -> E. p e. A p .<_ W )

Proof

Step Hyp Ref Expression
1 lhp2a.l
 |-  .<_ = ( le ` K )
2 lhp2a.a
 |-  A = ( Atoms ` K )
3 lhp2a.h
 |-  H = ( LHyp ` K )
4 simpl
 |-  ( ( K e. HL /\ W e. H ) -> K e. HL )
5 eqid
 |-  ( Base ` K ) = ( Base ` K )
6 5 3 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
7 6 adantl
 |-  ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) )
8 eqid
 |-  ( 0. ` K ) = ( 0. ` K )
9 8 3 lhpn0
 |-  ( ( K e. HL /\ W e. H ) -> W =/= ( 0. ` K ) )
10 5 1 8 2 atle
 |-  ( ( K e. HL /\ W e. ( Base ` K ) /\ W =/= ( 0. ` K ) ) -> E. p e. A p .<_ W )
11 4 7 9 10 syl3anc
 |-  ( ( K e. HL /\ W e. H ) -> E. p e. A p .<_ W )