Step |
Hyp |
Ref |
Expression |
1 |
|
lhpexle1lem.1 |
|- ( ph -> E. p e. A ( p .<_ W /\ ps ) ) |
2 |
|
lhpexle1lem.2 |
|- ( ( ph /\ ( X e. A /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |
3 |
1
|
adantr |
|- ( ( ph /\ -. X e. A ) -> E. p e. A ( p .<_ W /\ ps ) ) |
4 |
|
simprl |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> p .<_ W ) |
5 |
|
simprr |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> ps ) |
6 |
|
simplr |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> p e. A ) |
7 |
|
simpllr |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> -. X e. A ) |
8 |
|
nelne2 |
|- ( ( p e. A /\ -. X e. A ) -> p =/= X ) |
9 |
6 7 8
|
syl2anc |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> p =/= X ) |
10 |
4 5 9
|
3jca |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> ( p .<_ W /\ ps /\ p =/= X ) ) |
11 |
10
|
ex |
|- ( ( ( ph /\ -. X e. A ) /\ p e. A ) -> ( ( p .<_ W /\ ps ) -> ( p .<_ W /\ ps /\ p =/= X ) ) ) |
12 |
11
|
reximdva |
|- ( ( ph /\ -. X e. A ) -> ( E. p e. A ( p .<_ W /\ ps ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) ) |
13 |
3 12
|
mpd |
|- ( ( ph /\ -. X e. A ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |
14 |
1
|
adantr |
|- ( ( ph /\ -. X .<_ W ) -> E. p e. A ( p .<_ W /\ ps ) ) |
15 |
|
simprl |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> p .<_ W ) |
16 |
|
simprr |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> ps ) |
17 |
|
simplr |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> -. X .<_ W ) |
18 |
|
nbrne2 |
|- ( ( p .<_ W /\ -. X .<_ W ) -> p =/= X ) |
19 |
15 17 18
|
syl2anc |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> p =/= X ) |
20 |
15 16 19
|
3jca |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> ( p .<_ W /\ ps /\ p =/= X ) ) |
21 |
20
|
ex |
|- ( ( ph /\ -. X .<_ W ) -> ( ( p .<_ W /\ ps ) -> ( p .<_ W /\ ps /\ p =/= X ) ) ) |
22 |
21
|
reximdv |
|- ( ( ph /\ -. X .<_ W ) -> ( E. p e. A ( p .<_ W /\ ps ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) ) |
23 |
14 22
|
mpd |
|- ( ( ph /\ -. X .<_ W ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |
24 |
13 23 2
|
pm2.61dda |
|- ( ph -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |