| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpexle1lem.1 |
|- ( ph -> E. p e. A ( p .<_ W /\ ps ) ) |
| 2 |
|
lhpexle1lem.2 |
|- ( ( ph /\ ( X e. A /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |
| 3 |
1
|
adantr |
|- ( ( ph /\ -. X e. A ) -> E. p e. A ( p .<_ W /\ ps ) ) |
| 4 |
|
simprl |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> p .<_ W ) |
| 5 |
|
simprr |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> ps ) |
| 6 |
|
simplr |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> p e. A ) |
| 7 |
|
simpllr |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> -. X e. A ) |
| 8 |
|
nelne2 |
|- ( ( p e. A /\ -. X e. A ) -> p =/= X ) |
| 9 |
6 7 8
|
syl2anc |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> p =/= X ) |
| 10 |
4 5 9
|
3jca |
|- ( ( ( ( ph /\ -. X e. A ) /\ p e. A ) /\ ( p .<_ W /\ ps ) ) -> ( p .<_ W /\ ps /\ p =/= X ) ) |
| 11 |
10
|
ex |
|- ( ( ( ph /\ -. X e. A ) /\ p e. A ) -> ( ( p .<_ W /\ ps ) -> ( p .<_ W /\ ps /\ p =/= X ) ) ) |
| 12 |
11
|
reximdva |
|- ( ( ph /\ -. X e. A ) -> ( E. p e. A ( p .<_ W /\ ps ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) ) |
| 13 |
3 12
|
mpd |
|- ( ( ph /\ -. X e. A ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |
| 14 |
1
|
adantr |
|- ( ( ph /\ -. X .<_ W ) -> E. p e. A ( p .<_ W /\ ps ) ) |
| 15 |
|
simprl |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> p .<_ W ) |
| 16 |
|
simprr |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> ps ) |
| 17 |
|
simplr |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> -. X .<_ W ) |
| 18 |
|
nbrne2 |
|- ( ( p .<_ W /\ -. X .<_ W ) -> p =/= X ) |
| 19 |
15 17 18
|
syl2anc |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> p =/= X ) |
| 20 |
15 16 19
|
3jca |
|- ( ( ( ph /\ -. X .<_ W ) /\ ( p .<_ W /\ ps ) ) -> ( p .<_ W /\ ps /\ p =/= X ) ) |
| 21 |
20
|
ex |
|- ( ( ph /\ -. X .<_ W ) -> ( ( p .<_ W /\ ps ) -> ( p .<_ W /\ ps /\ p =/= X ) ) ) |
| 22 |
21
|
reximdv |
|- ( ( ph /\ -. X .<_ W ) -> ( E. p e. A ( p .<_ W /\ ps ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) ) |
| 23 |
14 22
|
mpd |
|- ( ( ph /\ -. X .<_ W ) -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |
| 24 |
13 23 2
|
pm2.61dda |
|- ( ph -> E. p e. A ( p .<_ W /\ ps /\ p =/= X ) ) |