Step |
Hyp |
Ref |
Expression |
1 |
|
lhpex1.l |
|- .<_ = ( le ` K ) |
2 |
|
lhpex1.a |
|- A = ( Atoms ` K ) |
3 |
|
lhpex1.h |
|- H = ( LHyp ` K ) |
4 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y ) -> ( K e. HL /\ W e. H ) ) |
5 |
1 2 3
|
lhpexle1 |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ p =/= X ) ) |
6 |
4 5
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y ) -> E. p e. A ( p .<_ W /\ p =/= X ) ) |
7 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y /\ ( p .<_ W /\ p =/= X ) ) -> p .<_ W ) |
8 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y /\ ( p .<_ W /\ p =/= X ) ) -> p =/= X ) |
9 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y /\ ( p .<_ W /\ p =/= X ) ) -> X = Y ) |
10 |
8 9
|
neeqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y /\ ( p .<_ W /\ p =/= X ) ) -> p =/= Y ) |
11 |
7 8 10
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y /\ ( p .<_ W /\ p =/= X ) ) -> ( p .<_ W /\ p =/= X /\ p =/= Y ) ) |
12 |
11
|
3expia |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y ) -> ( ( p .<_ W /\ p =/= X ) -> ( p .<_ W /\ p =/= X /\ p =/= Y ) ) ) |
13 |
12
|
reximdv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y ) -> ( E. p e. A ( p .<_ W /\ p =/= X ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) ) ) |
14 |
6 13
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X = Y ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) ) |
15 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) -> K e. HL ) |
16 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) -> X e. A ) |
17 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) -> Y e. A ) |
18 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) -> X =/= Y ) |
19 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
20 |
1 19 2
|
hlsupr |
|- ( ( ( K e. HL /\ X e. A /\ Y e. A ) /\ X =/= Y ) -> E. p e. A ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) |
21 |
15 16 17 18 20
|
syl31anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) -> E. p e. A ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) |
22 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
23 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> K e. HL ) |
24 |
23
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> K e. Lat ) |
25 |
|
simprlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> p e. A ) |
26 |
22 2
|
atbase |
|- ( p e. A -> p e. ( Base ` K ) ) |
27 |
25 26
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> p e. ( Base ` K ) ) |
28 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> X e. A ) |
29 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> Y e. A ) |
30 |
22 19 2
|
hlatjcl |
|- ( ( K e. HL /\ X e. A /\ Y e. A ) -> ( X ( join ` K ) Y ) e. ( Base ` K ) ) |
31 |
23 28 29 30
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> ( X ( join ` K ) Y ) e. ( Base ` K ) ) |
32 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> W e. H ) |
33 |
22 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
34 |
32 33
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> W e. ( Base ` K ) ) |
35 |
|
simprr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> p .<_ ( X ( join ` K ) Y ) ) |
36 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> X .<_ W ) |
37 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> Y .<_ W ) |
38 |
22 2
|
atbase |
|- ( X e. A -> X e. ( Base ` K ) ) |
39 |
28 38
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> X e. ( Base ` K ) ) |
40 |
22 2
|
atbase |
|- ( Y e. A -> Y e. ( Base ` K ) ) |
41 |
29 40
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> Y e. ( Base ` K ) ) |
42 |
22 1 19
|
latjle12 |
|- ( ( K e. Lat /\ ( X e. ( Base ` K ) /\ Y e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( X .<_ W /\ Y .<_ W ) <-> ( X ( join ` K ) Y ) .<_ W ) ) |
43 |
24 39 41 34 42
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> ( ( X .<_ W /\ Y .<_ W ) <-> ( X ( join ` K ) Y ) .<_ W ) ) |
44 |
36 37 43
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> ( X ( join ` K ) Y ) .<_ W ) |
45 |
22 1 24 27 31 34 35 44
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> p .<_ W ) |
46 |
|
simprr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> p =/= X ) |
47 |
|
simprr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> p =/= Y ) |
48 |
45 46 47
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( ( X =/= Y /\ p e. A ) /\ ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) ) ) -> ( p .<_ W /\ p =/= X /\ p =/= Y ) ) |
49 |
48
|
exp44 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> ( X =/= Y -> ( p e. A -> ( ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) -> ( p .<_ W /\ p =/= X /\ p =/= Y ) ) ) ) ) |
50 |
49
|
imp31 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) /\ p e. A ) -> ( ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) -> ( p .<_ W /\ p =/= X /\ p =/= Y ) ) ) |
51 |
50
|
reximdva |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) -> ( E. p e. A ( p =/= X /\ p =/= Y /\ p .<_ ( X ( join ` K ) Y ) ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) ) ) |
52 |
21 51
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ X =/= Y ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) ) |
53 |
14 52
|
pm2.61dane |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. A /\ X .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) ) |