| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpex1.l |
|- .<_ = ( le ` K ) |
| 2 |
|
lhpex1.a |
|- A = ( Atoms ` K ) |
| 3 |
|
lhpex1.h |
|- H = ( LHyp ` K ) |
| 4 |
1 2 3
|
lhpexle2 |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) ) |
| 5 |
|
3anass |
|- ( ( p .<_ W /\ p =/= X /\ p =/= Y ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Y ) ) ) |
| 6 |
5
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) ) ) |
| 7 |
4 6
|
sylib |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) ) ) |
| 8 |
1 2 3
|
lhpexle2 |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Z ) ) |
| 9 |
8
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Z ) ) |
| 10 |
|
3anass |
|- ( ( p .<_ W /\ p =/= X /\ p =/= Z ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Z ) ) ) |
| 11 |
10
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Z ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) ) ) |
| 12 |
9 11
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) ) ) |
| 13 |
1 2 3
|
lhpexle2 |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ p =/= Y /\ p =/= Z ) ) |
| 14 |
|
3anass |
|- ( ( p .<_ W /\ p =/= Y /\ p =/= Z ) <-> ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
| 15 |
14
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ p =/= Y /\ p =/= Z ) <-> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
| 16 |
13 15
|
sylib |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
| 18 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 19 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Y e. A ) |
| 20 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Z e. A ) |
| 21 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> X e. A ) |
| 22 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Y .<_ W ) |
| 23 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Z .<_ W ) |
| 24 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> X .<_ W ) |
| 25 |
1 2 3
|
lhpexle3lem |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Y e. A /\ Z e. A /\ X e. A ) /\ ( Y .<_ W /\ Z .<_ W /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) ) |
| 26 |
18 19 20 21 22 23 24 25
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) ) |
| 27 |
|
df-3an |
|- ( ( p =/= Y /\ p =/= Z /\ p =/= X ) <-> ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
| 28 |
27
|
anbi2i |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) <-> ( p .<_ W /\ ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) ) |
| 29 |
|
3anass |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> ( p .<_ W /\ ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) ) |
| 30 |
28 29
|
bitr4i |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) <-> ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
| 31 |
30
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) <-> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
| 32 |
26 31
|
sylib |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
| 33 |
17 32
|
lhpexle1lem |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
| 34 |
|
an31 |
|- ( ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
| 35 |
34
|
anbi2i |
|- ( ( p .<_ W /\ ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) ) |
| 36 |
|
3anass |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) ) |
| 37 |
35 29 36
|
3bitr4i |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
| 38 |
37
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
| 39 |
33 38
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
| 40 |
39
|
3expa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
| 41 |
12 40
|
lhpexle1lem |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
| 42 |
|
an32 |
|- ( ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
| 43 |
42
|
anbi2i |
|- ( ( p .<_ W /\ ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) ) |
| 44 |
|
3anass |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) ) |
| 45 |
43 36 44
|
3bitr4i |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
| 46 |
45
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
| 47 |
41 46
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
| 48 |
7 47
|
lhpexle1lem |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
| 49 |
|
df-3an |
|- ( ( p =/= X /\ p =/= Y /\ p =/= Z ) <-> ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
| 50 |
49
|
anbi2i |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) ) |
| 51 |
44 50
|
bitr4i |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) ) |
| 52 |
51
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) ) |
| 53 |
48 52
|
sylib |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) ) |