| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpatltex.s |
|- .< = ( lt ` K ) |
| 2 |
|
lhpatltex.a |
|- A = ( Atoms ` K ) |
| 3 |
|
lhpatltex.h |
|- H = ( LHyp ` K ) |
| 4 |
|
simpl |
|- ( ( K e. HL /\ W e. H ) -> K e. HL ) |
| 5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 6 |
5 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 7 |
6
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
| 8 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 9 |
|
eqid |
|- ( |
| 10 |
8 9 3
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W ( |
| 11 |
5 1 8 9 2
|
1cvratex |
|- ( ( K e. HL /\ W e. ( Base ` K ) /\ W ( E. p e. A p .< W ) |
| 12 |
4 7 10 11
|
syl3anc |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A p .< W ) |