Step |
Hyp |
Ref |
Expression |
1 |
|
lhp2a.l |
|- .<_ = ( le ` K ) |
2 |
|
lhp2a.a |
|- A = ( Atoms ` K ) |
3 |
|
lhp2a.h |
|- H = ( LHyp ` K ) |
4 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
5 |
|
eqid |
|- ( |
6 |
4 5 3
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W ( |
7 |
|
simpl |
|- ( ( K e. HL /\ W e. H ) -> K e. HL ) |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
8 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
10 |
9
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
11 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
12 |
8 4
|
op1cl |
|- ( K e. OP -> ( 1. ` K ) e. ( Base ` K ) ) |
13 |
11 12
|
syl |
|- ( K e. HL -> ( 1. ` K ) e. ( Base ` K ) ) |
14 |
13
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> ( 1. ` K ) e. ( Base ` K ) ) |
15 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
16 |
8 1 15 5 2
|
cvrval3 |
|- ( ( K e. HL /\ W e. ( Base ` K ) /\ ( 1. ` K ) e. ( Base ` K ) ) -> ( W ( E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) ) |
17 |
7 10 14 16
|
syl3anc |
|- ( ( K e. HL /\ W e. H ) -> ( W ( E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) ) |
18 |
6 17
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) |
19 |
|
simpl |
|- ( ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) -> -. p .<_ W ) |
20 |
19
|
reximi |
|- ( E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) -> E. p e. A -. p .<_ W ) |
21 |
18 20
|
syl |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A -. p .<_ W ) |