| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhp2a.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | lhp2a.a |  |-  A = ( Atoms ` K ) | 
						
							| 3 |  | lhp2a.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | eqid |  |-  ( 1. ` K ) = ( 1. ` K ) | 
						
							| 5 |  | eqid |  |-  (  | 
						
							| 6 | 4 5 3 | lhp1cvr |  |-  ( ( K e. HL /\ W e. H ) -> W (  | 
						
							| 7 |  | simpl |  |-  ( ( K e. HL /\ W e. H ) -> K e. HL ) | 
						
							| 8 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 9 | 8 3 | lhpbase |  |-  ( W e. H -> W e. ( Base ` K ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) | 
						
							| 11 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 12 | 8 4 | op1cl |  |-  ( K e. OP -> ( 1. ` K ) e. ( Base ` K ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( K e. HL -> ( 1. ` K ) e. ( Base ` K ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( K e. HL /\ W e. H ) -> ( 1. ` K ) e. ( Base ` K ) ) | 
						
							| 15 |  | eqid |  |-  ( join ` K ) = ( join ` K ) | 
						
							| 16 | 8 1 15 5 2 | cvrval3 |  |-  ( ( K e. HL /\ W e. ( Base ` K ) /\ ( 1. ` K ) e. ( Base ` K ) ) -> ( W (  E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) ) | 
						
							| 17 | 7 10 14 16 | syl3anc |  |-  ( ( K e. HL /\ W e. H ) -> ( W (  E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) ) | 
						
							| 18 | 6 17 | mpbid |  |-  ( ( K e. HL /\ W e. H ) -> E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) ) | 
						
							| 19 |  | simpl |  |-  ( ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) -> -. p .<_ W ) | 
						
							| 20 | 19 | reximi |  |-  ( E. p e. A ( -. p .<_ W /\ ( W ( join ` K ) p ) = ( 1. ` K ) ) -> E. p e. A -. p .<_ W ) | 
						
							| 21 | 18 20 | syl |  |-  ( ( K e. HL /\ W e. H ) -> E. p e. A -. p .<_ W ) |