Step |
Hyp |
Ref |
Expression |
1 |
|
lhpjat.l |
|- .<_ = ( le ` K ) |
2 |
|
lhpjat.j |
|- .\/ = ( join ` K ) |
3 |
|
lhpjat.u |
|- .1. = ( 1. ` K ) |
4 |
|
lhpjat.a |
|- A = ( Atoms ` K ) |
5 |
|
lhpjat.h |
|- H = ( LHyp ` K ) |
6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
7 |
6
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat ) |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
8 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
10 |
9
|
ad2antrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> P e. ( Base ` K ) ) |
11 |
8 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
12 |
11
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> W e. ( Base ` K ) ) |
13 |
8 2
|
latjcom |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( P .\/ W ) = ( W .\/ P ) ) |
14 |
7 10 12 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( W .\/ P ) ) |
15 |
1 2 3 4 5
|
lhpjat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = .1. ) |
16 |
14 15
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = .1. ) |