| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lhpjat.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							lhpjat.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							lhpjat.u | 
							 |-  .1. = ( 1. ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							lhpjat.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							lhpjat.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 9 | 
							
								8 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 11 | 
							
								8 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antlr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 13 | 
							
								8 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( P .\/ W ) = ( W .\/ P ) )  | 
						
						
							| 14 | 
							
								7 10 12 13
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( W .\/ P ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5
							 | 
							lhpjat1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = .1. )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = .1. )  |