Metamath Proof Explorer


Theorem lhpjat2

Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses lhpjat.l
|- .<_ = ( le ` K )
lhpjat.j
|- .\/ = ( join ` K )
lhpjat.u
|- .1. = ( 1. ` K )
lhpjat.a
|- A = ( Atoms ` K )
lhpjat.h
|- H = ( LHyp ` K )
Assertion lhpjat2
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = .1. )

Proof

Step Hyp Ref Expression
1 lhpjat.l
 |-  .<_ = ( le ` K )
2 lhpjat.j
 |-  .\/ = ( join ` K )
3 lhpjat.u
 |-  .1. = ( 1. ` K )
4 lhpjat.a
 |-  A = ( Atoms ` K )
5 lhpjat.h
 |-  H = ( LHyp ` K )
6 hllat
 |-  ( K e. HL -> K e. Lat )
7 6 ad2antrr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat )
8 eqid
 |-  ( Base ` K ) = ( Base ` K )
9 8 4 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
10 9 ad2antrl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> P e. ( Base ` K ) )
11 8 5 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
12 11 ad2antlr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> W e. ( Base ` K ) )
13 8 2 latjcom
 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( P .\/ W ) = ( W .\/ P ) )
14 7 10 12 13 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( W .\/ P ) )
15 1 2 3 4 5 lhpjat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ P ) = .1. )
16 14 15 eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = .1. )