| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhple.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | lhple.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | lhple.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | lhple.m |  |-  ./\ = ( meet ` K ) | 
						
							| 5 |  | lhple.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | lhple.h |  |-  H = ( LHyp ` K ) | 
						
							| 7 |  | simp1l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> K e. HL ) | 
						
							| 8 | 7 | hllatd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> K e. Lat ) | 
						
							| 9 |  | simp2l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> P e. A ) | 
						
							| 10 | 1 5 | atbase |  |-  ( P e. A -> P e. B ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> P e. B ) | 
						
							| 12 |  | simp3l |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> X e. B ) | 
						
							| 13 | 1 3 | latjcom |  |-  ( ( K e. Lat /\ P e. B /\ X e. B ) -> ( P .\/ X ) = ( X .\/ P ) ) | 
						
							| 14 | 8 11 12 13 | syl3anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( P .\/ X ) = ( X .\/ P ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( P .\/ X ) ./\ W ) = ( ( X .\/ P ) ./\ W ) ) | 
						
							| 16 |  | simp1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | simp3r |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> X .<_ W ) | 
						
							| 18 | 1 2 3 4 6 | lhpmod6i1 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ P e. B ) /\ X .<_ W ) -> ( X .\/ ( P ./\ W ) ) = ( ( X .\/ P ) ./\ W ) ) | 
						
							| 19 | 16 12 11 17 18 | syl121anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( X .\/ ( P ./\ W ) ) = ( ( X .\/ P ) ./\ W ) ) | 
						
							| 20 |  | eqid |  |-  ( 0. ` K ) = ( 0. ` K ) | 
						
							| 21 | 2 4 20 5 6 | lhpmat |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P ./\ W ) = ( 0. ` K ) ) | 
						
							| 22 | 21 | 3adant3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( P ./\ W ) = ( 0. ` K ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( X .\/ ( P ./\ W ) ) = ( X .\/ ( 0. ` K ) ) ) | 
						
							| 24 |  | hlol |  |-  ( K e. HL -> K e. OL ) | 
						
							| 25 | 7 24 | syl |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> K e. OL ) | 
						
							| 26 | 1 3 20 | olj01 |  |-  ( ( K e. OL /\ X e. B ) -> ( X .\/ ( 0. ` K ) ) = X ) | 
						
							| 27 | 25 12 26 | syl2anc |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( X .\/ ( 0. ` K ) ) = X ) | 
						
							| 28 | 23 27 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( X .\/ ( P ./\ W ) ) = X ) | 
						
							| 29 | 15 19 28 | 3eqtr2d |  |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( P .\/ X ) ./\ W ) = X ) |