Step |
Hyp |
Ref |
Expression |
1 |
|
lhplt.l |
|- .<_ = ( le ` K ) |
2 |
|
lhplt.s |
|- .< = ( lt ` K ) |
3 |
|
lhplt.a |
|- A = ( Atoms ` K ) |
4 |
|
lhplt.h |
|- H = ( LHyp ` K ) |
5 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> K e. HL ) |
6 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> P e. A ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 4
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> W e. ( Base ` K ) ) |
10 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
11 |
|
eqid |
|- ( |
12 |
10 11 4
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W ( |
13 |
12
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> W ( |
14 |
|
simprr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> P .<_ W ) |
15 |
7 1 2 10 11 3
|
1cvratlt |
|- ( ( ( K e. HL /\ P e. A /\ W e. ( Base ` K ) ) /\ ( W ( P .< W ) |
16 |
5 6 9 13 14 15
|
syl32anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> P .< W ) |