Metamath Proof Explorer


Theorem lhplt

Description: An atom under a co-atom is strictly less than it. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses lhplt.l
|- .<_ = ( le ` K )
lhplt.s
|- .< = ( lt ` K )
lhplt.a
|- A = ( Atoms ` K )
lhplt.h
|- H = ( LHyp ` K )
Assertion lhplt
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> P .< W )

Proof

Step Hyp Ref Expression
1 lhplt.l
 |-  .<_ = ( le ` K )
2 lhplt.s
 |-  .< = ( lt ` K )
3 lhplt.a
 |-  A = ( Atoms ` K )
4 lhplt.h
 |-  H = ( LHyp ` K )
5 simpll
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> K e. HL )
6 simprl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> P e. A )
7 eqid
 |-  ( Base ` K ) = ( Base ` K )
8 7 4 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
9 8 ad2antlr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> W e. ( Base ` K ) )
10 eqid
 |-  ( 1. ` K ) = ( 1. ` K )
11 eqid
 |-  ( 
12 10 11 4 lhp1cvr
 |-  ( ( K e. HL /\ W e. H ) -> W ( 
13 12 adantr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> W ( 
14 simprr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> P .<_ W )
15 7 1 2 10 11 3 1cvratlt
 |-  ( ( ( K e. HL /\ P e. A /\ W e. ( Base ` K ) ) /\ ( W (  P .< W )
16 5 6 9 13 14 15 syl32anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ P .<_ W ) ) -> P .< W )