Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmat.l |
|- .<_ = ( le ` K ) |
2 |
|
lhpmat.m |
|- ./\ = ( meet ` K ) |
3 |
|
lhpmat.z |
|- .0. = ( 0. ` K ) |
4 |
|
lhpmat.a |
|- A = ( Atoms ` K ) |
5 |
|
lhpmat.h |
|- H = ( LHyp ` K ) |
6 |
1 2 3 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P ./\ W ) = .0. ) |
7 |
6
|
anassrs |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ -. P .<_ W ) -> ( P ./\ W ) = .0. ) |
8 |
|
hlatl |
|- ( K e. HL -> K e. AtLat ) |
9 |
8
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> K e. AtLat ) |
10 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> P e. A ) |
11 |
3 4
|
atn0 |
|- ( ( K e. AtLat /\ P e. A ) -> P =/= .0. ) |
12 |
11
|
necomd |
|- ( ( K e. AtLat /\ P e. A ) -> .0. =/= P ) |
13 |
9 10 12
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> .0. =/= P ) |
14 |
|
neeq1 |
|- ( ( P ./\ W ) = .0. -> ( ( P ./\ W ) =/= P <-> .0. =/= P ) ) |
15 |
14
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> ( ( P ./\ W ) =/= P <-> .0. =/= P ) ) |
16 |
13 15
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> ( P ./\ W ) =/= P ) |
17 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
18 |
17
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> K e. Lat ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
19 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
21 |
10 20
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> P e. ( Base ` K ) ) |
22 |
19 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
23 |
22
|
ad3antlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> W e. ( Base ` K ) ) |
24 |
19 1 2
|
latleeqm1 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( P .<_ W <-> ( P ./\ W ) = P ) ) |
25 |
18 21 23 24
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> ( P .<_ W <-> ( P ./\ W ) = P ) ) |
26 |
25
|
necon3bbid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> ( -. P .<_ W <-> ( P ./\ W ) =/= P ) ) |
27 |
16 26
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ P e. A ) /\ ( P ./\ W ) = .0. ) -> -. P .<_ W ) |
28 |
7 27
|
impbida |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A ) -> ( -. P .<_ W <-> ( P ./\ W ) = .0. ) ) |