Step |
Hyp |
Ref |
Expression |
1 |
|
lhpmcvr.b |
|- B = ( Base ` K ) |
2 |
|
lhpmcvr.l |
|- .<_ = ( le ` K ) |
3 |
|
lhpmcvr.m |
|- ./\ = ( meet ` K ) |
4 |
|
lhpmcvr.c |
|- C = ( |
5 |
|
lhpmcvr.h |
|- H = ( LHyp ` K ) |
6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
7 |
6
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. Lat ) |
8 |
|
simprl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> X e. B ) |
9 |
1 5
|
lhpbase |
|- ( W e. H -> W e. B ) |
10 |
9
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W e. B ) |
11 |
1 3
|
latmcom |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) = ( W ./\ X ) ) |
12 |
7 8 10 11
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) = ( W ./\ X ) ) |
13 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
14 |
13 4 5
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W C ( 1. ` K ) ) |
15 |
14
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W C ( 1. ` K ) ) |
16 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
17 |
1 2 16 13 5
|
lhpj1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( W ( join ` K ) X ) = ( 1. ` K ) ) |
18 |
15 17
|
breqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W C ( W ( join ` K ) X ) ) |
19 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. HL ) |
20 |
1 16 3 4
|
cvrexch |
|- ( ( K e. HL /\ W e. B /\ X e. B ) -> ( ( W ./\ X ) C X <-> W C ( W ( join ` K ) X ) ) ) |
21 |
19 10 8 20
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( W ./\ X ) C X <-> W C ( W ( join ` K ) X ) ) ) |
22 |
18 21
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( W ./\ X ) C X ) |
23 |
12 22
|
eqbrtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) C X ) |