| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lhpmcvr.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							lhpmcvr.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							lhpmcvr.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							lhpmcvr.c | 
							 |-  C = (   | 
						
						
							| 5 | 
							
								
							 | 
							lhpmcvr.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 7 | 
							
								6
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> X e. B )  | 
						
						
							| 9 | 
							
								1 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. B )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antlr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W e. B )  | 
						
						
							| 11 | 
							
								1 3
							 | 
							latmcom | 
							 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) = ( W ./\ X ) )  | 
						
						
							| 12 | 
							
								7 8 10 11
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) = ( W ./\ X ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 14 | 
							
								13 4 5
							 | 
							lhp1cvr | 
							 |-  ( ( K e. HL /\ W e. H ) -> W C ( 1. ` K ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W C ( 1. ` K ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( join ` K ) = ( join ` K )  | 
						
						
							| 17 | 
							
								1 2 16 13 5
							 | 
							lhpj1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( W ( join ` K ) X ) = ( 1. ` K ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							breqtrrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W C ( W ( join ` K ) X ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. HL )  | 
						
						
							| 20 | 
							
								1 16 3 4
							 | 
							cvrexch | 
							 |-  ( ( K e. HL /\ W e. B /\ X e. B ) -> ( ( W ./\ X ) C X <-> W C ( W ( join ` K ) X ) ) )  | 
						
						
							| 21 | 
							
								19 10 8 20
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( W ./\ X ) C X <-> W C ( W ( join ` K ) X ) ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							mpbird | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( W ./\ X ) C X )  | 
						
						
							| 23 | 
							
								12 22
							 | 
							eqbrtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) C X )  |