| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lhpmcvr2.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							lhpmcvr2.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							lhpmcvr2.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							lhpmcvr2.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							lhpmcvr2.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							lhpmcvr2.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  (   | 
						
						
							| 8 | 
							
								1 2 4 7 6
							 | 
							lhpmcvr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( X ./\ W ) (   | 
						
						
							| 9 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> K e. HL )  | 
						
						
							| 10 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> X e. B )  | 
						
						
							| 11 | 
							
								1 6
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. B )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antlr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> W e. B )  | 
						
						
							| 13 | 
							
								1 2 3 4 7 5
							 | 
							cvrval5 | 
							 |-  ( ( K e. HL /\ X e. B /\ W e. B ) -> ( ( X ./\ W ) (  E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) ) )  | 
						
						
							| 14 | 
							
								9 10 12 13
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> ( ( X ./\ W ) (  E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) ) )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. p e. A ( -. p .<_ W /\ ( p .\/ ( X ./\ W ) ) = X ) )  |