Metamath Proof Explorer


Theorem lhpmcvr3

Description: Specialization of lhpmcvr2 . TODO: Use this to simplify many uses of ( P .\/ ( X ./\ W ) ) = X to become P .<_ X . (Contributed by NM, 6-Apr-2014)

Ref Expression
Hypotheses lhpmcvr2.b
|- B = ( Base ` K )
lhpmcvr2.l
|- .<_ = ( le ` K )
lhpmcvr2.j
|- .\/ = ( join ` K )
lhpmcvr2.m
|- ./\ = ( meet ` K )
lhpmcvr2.a
|- A = ( Atoms ` K )
lhpmcvr2.h
|- H = ( LHyp ` K )
Assertion lhpmcvr3
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .<_ X <-> ( P .\/ ( X ./\ W ) ) = X ) )

Proof

Step Hyp Ref Expression
1 lhpmcvr2.b
 |-  B = ( Base ` K )
2 lhpmcvr2.l
 |-  .<_ = ( le ` K )
3 lhpmcvr2.j
 |-  .\/ = ( join ` K )
4 lhpmcvr2.m
 |-  ./\ = ( meet ` K )
5 lhpmcvr2.a
 |-  A = ( Atoms ` K )
6 lhpmcvr2.h
 |-  H = ( LHyp ` K )
7 simpl1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> K e. HL )
8 simpl3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> P e. A )
9 simpl2l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> X e. B )
10 simpl1r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> W e. H )
11 1 6 lhpbase
 |-  ( W e. H -> W e. B )
12 10 11 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> W e. B )
13 simpr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> P .<_ X )
14 1 2 3 4 5 atmod3i1
 |-  ( ( K e. HL /\ ( P e. A /\ X e. B /\ W e. B ) /\ P .<_ X ) -> ( P .\/ ( X ./\ W ) ) = ( X ./\ ( P .\/ W ) ) )
15 7 8 9 12 13 14 syl131anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P .\/ ( X ./\ W ) ) = ( X ./\ ( P .\/ W ) ) )
16 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( K e. HL /\ W e. H ) )
17 simpl3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P e. A /\ -. P .<_ W ) )
18 eqid
 |-  ( 1. ` K ) = ( 1. ` K )
19 2 3 18 5 6 lhpjat2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) )
20 16 17 19 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P .\/ W ) = ( 1. ` K ) )
21 20 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( X ./\ ( P .\/ W ) ) = ( X ./\ ( 1. ` K ) ) )
22 hlol
 |-  ( K e. HL -> K e. OL )
23 7 22 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> K e. OL )
24 1 4 18 olm11
 |-  ( ( K e. OL /\ X e. B ) -> ( X ./\ ( 1. ` K ) ) = X )
25 23 9 24 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( X ./\ ( 1. ` K ) ) = X )
26 15 21 25 3eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ P .<_ X ) -> ( P .\/ ( X ./\ W ) ) = X )
27 simpl1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> K e. HL )
28 27 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> K e. Lat )
29 simpl3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P e. A )
30 1 5 atbase
 |-  ( P e. A -> P e. B )
31 29 30 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P e. B )
32 simpl2l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> X e. B )
33 simpl1r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> W e. H )
34 33 11 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> W e. B )
35 1 4 latmcl
 |-  ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ./\ W ) e. B )
36 28 32 34 35 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> ( X ./\ W ) e. B )
37 1 2 3 latlej1
 |-  ( ( K e. Lat /\ P e. B /\ ( X ./\ W ) e. B ) -> P .<_ ( P .\/ ( X ./\ W ) ) )
38 28 31 36 37 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P .<_ ( P .\/ ( X ./\ W ) ) )
39 simpr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> ( P .\/ ( X ./\ W ) ) = X )
40 38 39 breqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( P .\/ ( X ./\ W ) ) = X ) -> P .<_ X )
41 26 40 impbida
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .<_ X <-> ( P .\/ ( X ./\ W ) ) = X ) )