| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpne0.z |  |-  .0. = ( 0. ` K ) | 
						
							| 2 |  | lhpne0.h |  |-  H = ( LHyp ` K ) | 
						
							| 3 |  | eqid |  |-  ( lt ` K ) = ( lt ` K ) | 
						
							| 4 | 3 1 2 | lhp0lt |  |-  ( ( K e. HL /\ W e. H ) -> .0. ( lt ` K ) W ) | 
						
							| 5 |  | simpl |  |-  ( ( K e. HL /\ W e. H ) -> K e. HL ) | 
						
							| 6 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 7 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 8 | 7 1 | op0cl |  |-  ( K e. OP -> .0. e. ( Base ` K ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( K e. HL -> .0. e. ( Base ` K ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` K ) ) | 
						
							| 11 |  | simpr |  |-  ( ( K e. HL /\ W e. H ) -> W e. H ) | 
						
							| 12 | 3 | pltne |  |-  ( ( K e. HL /\ .0. e. ( Base ` K ) /\ W e. H ) -> ( .0. ( lt ` K ) W -> .0. =/= W ) ) | 
						
							| 13 | 5 10 11 12 | syl3anc |  |-  ( ( K e. HL /\ W e. H ) -> ( .0. ( lt ` K ) W -> .0. =/= W ) ) | 
						
							| 14 | 4 13 | mpd |  |-  ( ( K e. HL /\ W e. H ) -> .0. =/= W ) | 
						
							| 15 | 14 | necomd |  |-  ( ( K e. HL /\ W e. H ) -> W =/= .0. ) |