Description: The orthocomplement of a co-atom (lattice hyperplane) is an atom. (Contributed by NM, 18-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhpoc.b | |- B = ( Base ` K ) |
|
lhpoc.o | |- ._|_ = ( oc ` K ) |
||
lhpoc.a | |- A = ( Atoms ` K ) |
||
lhpoc.h | |- H = ( LHyp ` K ) |
||
Assertion | lhpoc | |- ( ( K e. HL /\ W e. B ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpoc.b | |- B = ( Base ` K ) |
|
2 | lhpoc.o | |- ._|_ = ( oc ` K ) |
|
3 | lhpoc.a | |- A = ( Atoms ` K ) |
|
4 | lhpoc.h | |- H = ( LHyp ` K ) |
|
5 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
6 | eqid | |- ( |
|
7 | 1 5 6 4 | islhp2 | |- ( ( K e. HL /\ W e. B ) -> ( W e. H <-> W ( |
8 | 1 5 2 6 3 | 1cvrco | |- ( ( K e. HL /\ W e. B ) -> ( W ( |
9 | 7 8 | bitrd | |- ( ( K e. HL /\ W e. B ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) ) |