Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhpocat.o | |- ._|_ = ( oc ` K ) |
|
| lhpocat.a | |- A = ( Atoms ` K ) |
||
| lhpocat.h | |- H = ( LHyp ` K ) |
||
| Assertion | lhpocat | |- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` W ) e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpocat.o | |- ._|_ = ( oc ` K ) |
|
| 2 | lhpocat.a | |- A = ( Atoms ` K ) |
|
| 3 | lhpocat.h | |- H = ( LHyp ` K ) |
|
| 4 | simpr | |- ( ( K e. HL /\ W e. H ) -> W e. H ) |
|
| 5 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 6 | 5 3 | lhpbase | |- ( W e. H -> W e. ( Base ` K ) ) |
| 7 | 5 1 2 3 | lhpoc | |- ( ( K e. HL /\ W e. ( Base ` K ) ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) ) |
| 8 | 6 7 | sylan2 | |- ( ( K e. HL /\ W e. H ) -> ( W e. H <-> ( ._|_ ` W ) e. A ) ) |
| 9 | 4 8 | mpbid | |- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` W ) e. A ) |