Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhpocnel.l | |- .<_ = ( le ` K ) |
|
| lhpocnel.o | |- ._|_ = ( oc ` K ) |
||
| lhpocnel.a | |- A = ( Atoms ` K ) |
||
| lhpocnel.h | |- H = ( LHyp ` K ) |
||
| Assertion | lhpocnel | |- ( ( K e. HL /\ W e. H ) -> ( ( ._|_ ` W ) e. A /\ -. ( ._|_ ` W ) .<_ W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpocnel.l | |- .<_ = ( le ` K ) |
|
| 2 | lhpocnel.o | |- ._|_ = ( oc ` K ) |
|
| 3 | lhpocnel.a | |- A = ( Atoms ` K ) |
|
| 4 | lhpocnel.h | |- H = ( LHyp ` K ) |
|
| 5 | 2 3 4 | lhpocat | |- ( ( K e. HL /\ W e. H ) -> ( ._|_ ` W ) e. A ) |
| 6 | 1 2 4 | lhpocnle | |- ( ( K e. HL /\ W e. H ) -> -. ( ._|_ ` W ) .<_ W ) |
| 7 | 5 6 | jca | |- ( ( K e. HL /\ W e. H ) -> ( ( ._|_ ` W ) e. A /\ -. ( ._|_ ` W ) .<_ W ) ) |