Step |
Hyp |
Ref |
Expression |
1 |
|
lhpocnel2.l |
|- .<_ = ( le ` K ) |
2 |
|
lhpocnel2.a |
|- A = ( Atoms ` K ) |
3 |
|
lhpocnel2.h |
|- H = ( LHyp ` K ) |
4 |
|
lhpocnel2.p |
|- P = ( ( oc ` K ) ` W ) |
5 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
6 |
1 5 2 3
|
lhpocnel |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
7 |
4
|
eleq1i |
|- ( P e. A <-> ( ( oc ` K ) ` W ) e. A ) |
8 |
4
|
breq1i |
|- ( P .<_ W <-> ( ( oc ` K ) ` W ) .<_ W ) |
9 |
8
|
notbii |
|- ( -. P .<_ W <-> -. ( ( oc ` K ) ` W ) .<_ W ) |
10 |
7 9
|
anbi12i |
|- ( ( P e. A /\ -. P .<_ W ) <-> ( ( ( oc ` K ) ` W ) e. A /\ -. ( ( oc ` K ) ` W ) .<_ W ) ) |
11 |
6 10
|
sylibr |
|- ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) ) |